forked from google/skylark
-
Notifications
You must be signed in to change notification settings - Fork 0
/
int.go
221 lines (195 loc) · 5.89 KB
/
int.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
// Copyright 2017 The Bazel Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package skylark
import (
"fmt"
"math"
"math/big"
"github.com/google/skylark/syntax"
)
// Int is the type of a Skylark int.
type Int struct{ bigint *big.Int }
// MakeInt returns a Skylark int for the specified signed integer.
func MakeInt(x int) Int { return MakeInt64(int64(x)) }
// MakeInt64 returns a Skylark int for the specified int64.
func MakeInt64(x int64) Int {
if 0 <= x && x < int64(len(smallint)) {
if !smallintok {
panic("MakeInt64 used before initialization")
}
return Int{&smallint[x]}
}
return Int{new(big.Int).SetInt64(x)}
}
// MakeUint returns a Skylark int for the specified unsigned integer.
func MakeUint(x uint) Int { return MakeUint64(uint64(x)) }
// MakeUint64 returns a Skylark int for the specified uint64.
func MakeUint64(x uint64) Int {
if x < uint64(len(smallint)) {
if !smallintok {
panic("MakeUint64 used before initialization")
}
return Int{&smallint[x]}
}
return Int{new(big.Int).SetUint64(uint64(x))}
}
var (
smallint [256]big.Int
smallintok bool
zero, one Int
)
func init() {
for i := range smallint {
smallint[i].SetInt64(int64(i))
}
smallintok = true
zero = MakeInt64(0)
one = MakeInt64(1)
}
// Int64 returns the value as an int64.
// If it is not exactly representable the result is undefined and ok is false.
func (i Int) Int64() (_ int64, ok bool) {
x, acc := bigintToInt64(i.bigint)
if acc != big.Exact {
return // inexact
}
return x, true
}
// Uint64 returns the value as a uint64.
// If it is not exactly representable the result is undefined and ok is false.
func (i Int) Uint64() (_ uint64, ok bool) {
x, acc := bigintToUint64(i.bigint)
if acc != big.Exact {
return // inexact
}
return x, true
}
// The math/big API should provide this function.
func bigintToInt64(i *big.Int) (int64, big.Accuracy) {
sign := i.Sign()
if sign > 0 {
if i.Cmp(maxint64) > 0 {
return math.MaxInt64, big.Below
}
} else if sign < 0 {
if i.Cmp(minint64) < 0 {
return math.MinInt64, big.Above
}
}
return i.Int64(), big.Exact
}
// The math/big API should provide this function.
func bigintToUint64(i *big.Int) (uint64, big.Accuracy) {
sign := i.Sign()
if sign > 0 {
if i.BitLen() > 64 {
return math.MaxUint64, big.Below
}
} else if sign < 0 {
return 0, big.Above
}
return i.Uint64(), big.Exact
}
var (
minint64 = new(big.Int).SetInt64(math.MinInt64)
maxint64 = new(big.Int).SetInt64(math.MaxInt64)
)
func (i Int) String() string { return i.bigint.String() }
func (i Int) Type() string { return "int" }
func (i Int) Freeze() {} // immutable
func (i Int) Truth() Bool { return i.Sign() != 0 }
func (i Int) Hash() (uint32, error) {
var lo big.Word
if i.bigint.Sign() != 0 {
lo = i.bigint.Bits()[0]
}
return 12582917 * uint32(lo+3), nil
}
func (x Int) CompareSameType(op syntax.Token, y Value, depth int) (bool, error) {
return threeway(op, x.bigint.Cmp(y.(Int).bigint)), nil
}
// Float returns the float value nearest i.
func (i Int) Float() Float {
// TODO(adonovan): opt: handle common values without allocation.
f, _ := new(big.Float).SetInt(i.bigint).Float64()
return Float(f)
}
func (x Int) Sign() int { return x.bigint.Sign() }
func (x Int) Add(y Int) Int { return Int{new(big.Int).Add(x.bigint, y.bigint)} }
func (x Int) Sub(y Int) Int { return Int{new(big.Int).Sub(x.bigint, y.bigint)} }
func (x Int) Mul(y Int) Int { return Int{new(big.Int).Mul(x.bigint, y.bigint)} }
func (x Int) Or(y Int) Int { return Int{new(big.Int).Or(x.bigint, y.bigint)} }
func (x Int) And(y Int) Int { return Int{new(big.Int).And(x.bigint, y.bigint)} }
func (x Int) Xor(y Int) Int { return Int{new(big.Int).Xor(x.bigint, y.bigint)} }
func (x Int) Not() Int { return Int{new(big.Int).Not(x.bigint)} }
func (x Int) Lsh(y uint) Int { return Int{new(big.Int).Lsh(x.bigint, y)} }
func (x Int) Rsh(y uint) Int { return Int{new(big.Int).Rsh(x.bigint, y)} }
// Precondition: y is nonzero.
func (x Int) Div(y Int) Int {
// http://python-history.blogspot.com/2010/08/why-pythons-integer-division-floors.html
var quo, rem big.Int
quo.QuoRem(x.bigint, y.bigint, &rem)
if (x.bigint.Sign() < 0) != (y.bigint.Sign() < 0) && rem.Sign() != 0 {
quo.Sub(&quo, one.bigint)
}
return Int{&quo}
}
// Precondition: y is nonzero.
func (x Int) Mod(y Int) Int {
var quo, rem big.Int
quo.QuoRem(x.bigint, y.bigint, &rem)
if (x.bigint.Sign() < 0) != (y.bigint.Sign() < 0) && rem.Sign() != 0 {
rem.Add(&rem, y.bigint)
}
return Int{&rem}
}
func (i Int) rational() *big.Rat { return new(big.Rat).SetInt(i.bigint) }
// AsInt32 returns the value of x if is representable as an int32.
func AsInt32(x Value) (int, error) {
i, ok := x.(Int)
if !ok {
return 0, fmt.Errorf("got %s, want int", x.Type())
}
if i.bigint.BitLen() <= 32 {
v := i.bigint.Int64()
if v >= math.MinInt32 && v <= math.MaxInt32 {
return int(v), nil
}
}
return 0, fmt.Errorf("%s out of range", i)
}
// NumberToInt converts a number x to an integer value.
// An int is returned unchanged, a float is truncated towards zero.
// NumberToInt reports an error for all other values.
func NumberToInt(x Value) (Int, error) {
switch x := x.(type) {
case Int:
return x, nil
case Float:
f := float64(x)
if math.IsInf(f, 0) {
return zero, fmt.Errorf("cannot convert float infinity to integer")
} else if math.IsNaN(f) {
return zero, fmt.Errorf("cannot convert float NaN to integer")
}
return finiteFloatToInt(x), nil
}
return zero, fmt.Errorf("cannot convert %s to int", x.Type())
}
// finiteFloatToInt converts f to an Int, truncating towards zero.
// f must be finite.
func finiteFloatToInt(f Float) Int {
var i big.Int
if math.MinInt64 <= f && f <= math.MaxInt64 {
// small values
i.SetInt64(int64(f))
} else {
rat := f.rational()
if rat == nil {
panic(f) // non-finite
}
i.Div(rat.Num(), rat.Denom())
}
return Int{&i}
}