-
Notifications
You must be signed in to change notification settings - Fork 185
/
Copy pathprocess_mnist_model.py
50 lines (41 loc) · 2.3 KB
/
process_mnist_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import os.path
import sys
from typing import List, Optional
sys.path.append(os.path.abspath(os.path.join(
os.path.dirname(sys.modules[__name__].__file__), '..'))) # type: ignore
if True:
from data.mnist_data_handler import split_mnist_data
from data.model_data import ModelData
from definitions import DATA_PATH
from neural_network_preprocessing.create_mnist_model import create
from neural_network_preprocessing.importance import (
ImportanceType, get_importance_type_name)
from neural_network_preprocessing.neural_network import ProcessedNetwork
from processing.processing_handler import RecordingProcessingHandler
from utility.log_handling import setup_logger
from utility.recording_config import RecordingConfig
setup_logger('sample_processing')
# -------------------------------------------------change these settings-----------------------------------------------#
name: str = 'default'
class_selection: Optional[List[int]] = None # [0, 1, 2, 3, 4]
importance_type: ImportanceType = ImportanceType(
ImportanceType.GAMMA | ImportanceType.L1)
basic_model_data: ModelData = create(name=name, batch_size=128, epochs=15, layer_data=[81, 49], regularized=False,
class_selection=class_selection)
# ---------------------------------------------------------------------------------------------------------------------#
split_suffix: str = ''
if class_selection is not None:
('_' + ''.join(str(e) + '_' for e in class_selection))
if not os.path.exists(f'{DATA_PATH}mnist/mnist_train_split{split_suffix}') or not os.path.exists(
f'{DATA_PATH}mnist/mnist_test_split'):
split_mnist_data(class_selection)
pn = ProcessedNetwork(model_data=basic_model_data)
pn.generate_importance_data(f'mnist/mnist_train_split{split_suffix}',
f'mnist/mnist_test_split{split_suffix}',
importance_type)
basic_model_data.store_model_data()
basic_model_data.save_data()
recording_config: RecordingConfig = RecordingConfig()
processHandler: RecordingProcessingHandler = RecordingProcessingHandler(name, get_importance_type_name(importance_type),
recording_config)
processHandler.process()