-
Notifications
You must be signed in to change notification settings - Fork 185
/
Copy pathstart_tool.py
220 lines (183 loc) · 9.27 KB
/
start_tool.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
import logging
import ntpath
import os
import threading
import time
import zipfile
from argparse import ArgumentParser
from typing import Optional
import wget
from OpenGL.GL import GL_MAJOR_VERSION, GL_MINOR_VERSION, glGetIntegerv
from data.data_handler import ProcessedNNHandler
from definitions import DATA_PATH, CameraPose
from gui.constants import StatisticLink
from gui.ui_window import OptionGui
from opengl_helper.screenshot import create_screenshot
from processing.network_processing import NetworkProcessor
from utility.file import FileHandler
from utility.log_handling import setup_logger
from utility.performance import track_time
from utility.window import Window, WindowHandler
def download_and_unzip_sample() -> str:
output_directory = DATA_PATH
filename = wget.download(
'https://drive.google.com/uc?export=download&id=1EpsubJhHH4shqzDhsBB0SHsBjWgWa03S', out=output_directory)
zip_filepath = os.path.join(output_directory, filename)
with zipfile.ZipFile(zip_filepath, 'r') as zip_ref:
zip_ref.extractall(DATA_PATH)
return os.path.join(DATA_PATH, 'sample_model.pro.npz')
def open_processed_network(option_gui: OptionGui, filename: str) -> None:
data_loader: ProcessedNNHandler = ProcessedNNHandler(filename)
option_gui.processing_config['prune_percentage'] = 0.9
option_gui.processing_setting.set()
option_gui.settings['network_name'] = ntpath.basename(
filename) + '_processed'
option_gui.update_layer(data_loader.layer_data, processed_nn=data_loader)
def compute_render(some_name: str) -> None:
global options_gui
global use_sample
if use_sample:
global sample_filepath
logging.info('Loading sample model...')
open_processed_network(options_gui, sample_filepath)
width, height = 1920, 1200
FileHandler().read_statistics()
window_handler: WindowHandler = WindowHandler()
window: Window = window_handler.create_window()
window.set_callbacks()
window.activate()
logging.info(
f'OpenGL Version: {glGetIntegerv(GL_MAJOR_VERSION)}.{glGetIntegerv(GL_MINOR_VERSION)}')
network_processor: Optional[NetworkProcessor] = None
@track_time(track_recursive=False)
def frame() -> None:
window_handler.update()
if network_processor is not None:
if 'trigger_network_sample' in options_gui.settings and options_gui.settings['trigger_network_sample'] > 0:
network_processor.reset_edges()
options_gui.settings['trigger_network_sample'] = 0
network_processor.process(options_gui.settings['action_state'])
network_processor.render(
window.cam, options_gui.render_config, options_gui.settings['show_class'])
if StatisticLink.SAMPLE_COUNT in options_gui.settings:
options_gui.settings[StatisticLink.SAMPLE_COUNT].set(
network_processor.edge_processor.point_count)
if StatisticLink.EDGE_COUNT in options_gui.settings:
options_gui.settings[StatisticLink.EDGE_COUNT].set(
network_processor.edge_processor.get_edge_count())
if StatisticLink.CELL_COUNT in options_gui.settings:
options_gui.settings[StatisticLink.CELL_COUNT].set(
network_processor.grid_processor.grid.grid_cell_count_overall)
if StatisticLink.PRUNED_EDGES in options_gui.settings:
options_gui.settings[StatisticLink.PRUNED_EDGES].set(
network_processor.network.pruned_edges)
window.swap()
while options_gui is None or (
len(options_gui.settings['current_layer_data']) == 0 and not options_gui.settings['Closed']):
window_handler.update()
time.sleep(5)
if not options_gui.settings['Closed']:
print('Start building network: ' +
str(options_gui.settings['current_layer_data']))
options_gui.settings['update_model'] = False
network_processor = NetworkProcessor(options_gui.settings['current_layer_data'],
options_gui.processing_config,
importance_data=options_gui.settings['importance_data'],
processed_nn=options_gui.settings['processed_nn'])
window.cam.base = network_processor.get_node_mid()
window.cam.set_position(CameraPose.LEFT)
fps: float = 120
frame_count: int = 0
to_pause_time: float = 0
last_frame_count: int = 0
checked_frame_count: int = -1
check_time: float = time.perf_counter()
last_time: float = time.perf_counter()
while window.is_active() and not options_gui.settings['Closed']:
if options_gui.settings['update_model']:
options_gui.settings['update_model'] = False
network_processor.delete()
print('Rebuilding network: ' +
str(options_gui.settings['current_layer_data']))
network_processor = NetworkProcessor(options_gui.settings['current_layer_data'],
options_gui.processing_config,
importance_data=options_gui.settings['importance_data'],
processed_nn=options_gui.settings['processed_nn'])
window.cam.base = network_processor.get_node_mid()
window.cam.set_position(CameraPose.LEFT)
frame()
if window.screenshot:
if 'network_name' in options_gui.settings.keys():
create_screenshot(
width, height, options_gui.settings['network_name'])
else:
create_screenshot(width, height)
window.screenshot = False
elif window.record:
window.frame_id += 1
if 'network_name' in options_gui.settings.keys():
create_screenshot(
width, height, options_gui.settings['network_name'], frame_id=window.frame_id)
else:
create_screenshot(width, height, frame_id=window.frame_id)
frame_count += 1
if time.perf_counter() - check_time > 1.0:
options_gui.settings[StatisticLink.FPS].set(float(
f'{float(frame_count - checked_frame_count) / (time.perf_counter() - check_time):.2f}'))
checked_frame_count = frame_count
check_time = time.perf_counter()
if 'save_file' in options_gui.settings.keys() and options_gui.settings['save_file']:
network_processor.save_model(
options_gui.settings['save_processed_nn_path'])
options_gui.settings['save_file'] = False
current_time: float = time.perf_counter()
elapsed_time: float = current_time - last_time
if elapsed_time < 1.0 / fps:
if elapsed_time > 0.001:
to_pause_time += (float(frame_count -
last_frame_count) / fps) - elapsed_time
last_frame_count = frame_count
last_time = current_time
if to_pause_time > 0.005:
time.sleep(to_pause_time)
paused_for: float = time.perf_counter() - current_time
to_pause_time -= paused_for
last_time += paused_for
else:
last_frame_count = frame_count
last_time = current_time
to_pause_time = 0 if to_pause_time < 0 else to_pause_time - \
(elapsed_time - 1.0 / fps)
network_processor.delete()
FileHandler().write_statistics()
window_handler.destroy()
options_gui.destroy()
def parse_args() -> bool:
parser = ArgumentParser(prog='Start nn_vis tool')
parser.add_argument('--demo', action='store_true',
help='Download sample of a processed model and render it with 90% pruned edges instead of generating a random model.')
args = parser.parse_args()
return args.demo
if __name__ == '__main__':
global options_gui
options_gui = OptionGui()
global sample_filepath
sample_filepath = 'sample_model.pro.npz'
global use_sample
use_sample = parse_args()
setup_logger('tool')
if use_sample:
expected_sample_path = os.path.join(DATA_PATH, sample_filepath)
if not os.path.exists(expected_sample_path):
logging.info(
f'Downloading sample model to "{expected_sample_path}". This might take a minute ...')
sample_filepath = download_and_unzip_sample()
else:
logging.info(
f'Using sample model at "{expected_sample_path}"')
sample_filepath = expected_sample_path
compute_render_thread: threading.Thread = threading.Thread(
target=compute_render, args=(1,))
compute_render_thread.setDaemon(True)
compute_render_thread.start()
options_gui.start()