-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathutils.py
88 lines (74 loc) · 2.74 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
import torch
import torch.nn.functional as F
import torchvision
import os
import cv2 as cv
import math
def cal_dirs_acc(gt_l, pred_l):
dot_product = (gt_l * pred_l).sum(-1).clamp(-1, 1)
angular_err = torch.acos(dot_product) * 180.0 / math.pi
l_err_mean = angular_err.mean()
return l_err_mean.item(), angular_err
def cal_ints_acc(gt_i, pred_i):
# Red channel:
gt_i_c = gt_i[:, :1]
pred_i_c = pred_i[:, :1]
scale = torch.linalg.lstsq(pred_i_c, gt_i_c).solution
ints_ratio1 = (gt_i_c - scale * pred_i_c).abs() / (gt_i_c + 1e-8)
# Green channel:
gt_i_c = gt_i[:, 1:2]
pred_i_c = pred_i[:, 1:2]
scale = torch.linalg.lstsq(pred_i_c, gt_i_c).solution
ints_ratio2 = (gt_i_c - scale * pred_i_c).abs() / (gt_i_c + 1e-8)
# Blue channel:
gt_i_c = gt_i[:, 2:3]
pred_i_c = pred_i[:, 2:3]
scale = torch.linalg.lstsq(pred_i_c, gt_i_c).solution
ints_ratio3 = (gt_i_c - scale * pred_i_c).abs() / (gt_i_c + 1e-8)
ints_ratio = (ints_ratio1 + ints_ratio2 + ints_ratio3) / 3
return ints_ratio.mean().item(), ints_ratio.mean(dim=-1)
def add_noise_light_init(ld, li, ld_noise=10, li_noise=0.1):
if ld_noise < 0:
new_ld = ld
elif ld_noise == 0:
new_ld = torch.zeros_like(ld)
new_ld[:, -1] = -1
else:
new_ld = add_noise_light_direction(ld, max_degree=ld_noise)
new_ld = F.normalize(new_ld, p=2, dim=-1)
if li_noise < 0:
new_li = li
elif li_noise == 0:
new_li = torch.ones_like(li)
else:
new_li = add_noise_light_intensity(li, max_diff=li_noise)
return [new_ld, new_li]
def add_noise_light_direction(ld, max_degree):
num_light, c = ld.shape
new_ld = torch.zeros_like(ld)
for i in range(num_light):
input_ld = ld[i]
flag = True
while flag:
random_ld = torch.rand(3) * 2 - 1
random_ld[2] = -torch.abs(random_ld[2])
random_ld = F.normalize(random_ld, p=2, dim=0)
degree_diff = torch.arccos((random_ld * input_ld).sum().clamp(-1,1)) / math.pi * 180
if random_ld[2] < -0.1 and degree_diff < max_degree:
flag = False
new_ld[i] = random_ld
return new_ld
def add_noise_light_intensity(li, max_diff):
num_light, c = li.shape
new_li = li * ((torch.rand(num_light, c) * 2 - 1) * max_diff + 1)
return new_li
def writer_add_image(file_name, epoch, writer):
if writer is None:
return
img = torch.tensor(cv.imread(file_name)[:, :, ::-1] / 255.0)
img_grid = torchvision.utils.make_grid(img.permute(2, 0, 1)[None, ...])
basename = os.path.basename(file_name)[:-4]
if basename == 'est_light_map':
basename = 'est_lighting'
writer.add_image(basename, img_grid, epoch)
return