-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathrun_caption_VidSwinBert_inference.py
245 lines (215 loc) · 10.8 KB
/
run_caption_VidSwinBert_inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
from __future__ import absolute_import, division, print_function
import os
import sys
pythonpath = os.path.abspath(
os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
print(pythonpath)
sys.path.insert(0, pythonpath)
import numpy as np
from PIL import Image
import os.path as op
import json
import time
import torch
import torch.distributed as dist
from apex import amp
import deepspeed
from src.configs.config import (basic_check_arguments, shared_configs)
from src.datasets.data_utils.video_ops import extract_frames_from_video_path
from src.datasets.data_utils.video_transforms import Compose, Resize, Normalize, CenterCrop
from src.datasets.data_utils.volume_transforms import ClipToTensor
from src.datasets.caption_tensorizer import build_tensorizer
from src.utils.deepspeed import fp32_to_fp16
from src.utils.logger import LOGGER as logger
from src.utils.logger import (TB_LOGGER, RunningMeter, add_log_to_file)
from src.utils.comm import (is_main_process,
get_rank, get_world_size, dist_init)
from src.utils.miscellaneous import (mkdir, set_seed, str_to_bool)
from src.modeling.video_captioning_e2e_vid_swin_bert import VideoTransformer
from src.modeling.load_swin import get_swin_model, reload_pretrained_swin
from src.modeling.load_bert import get_bert_model
from PIL import Image
import numpy as np
# import pyttsx3
def _online_video_decode(args, video_path):
decoder_num_frames = getattr(args, 'max_num_frames', 2)
frames, _ = extract_frames_from_video_path(
video_path, target_fps=3, num_frames=decoder_num_frames,
multi_thread_decode=False, sampling_strategy="uniform",
safeguard_duration=False, start=0, end=5)
for i in range(frames.shape[0]):
frame = frames[i]
print(f"save images at demo/{i}.png")
Image.fromarray(np.array(frame.permute(1,2,0))).save(f"/videocap/demo/{i}.png")
return frames
def _transforms(args, frames):
raw_video_crop_list = [
Resize(args.img_res),
CenterCrop((args.img_res,args.img_res)),
ClipToTensor(channel_nb=3),
Normalize(mean=[0.485, 0.456, 0.406],std=[0.229, 0.224, 0.225])
]
raw_video_prcoess = Compose(raw_video_crop_list)
frames = frames.numpy()
frames = np.transpose(frames, (0, 2, 3, 1))
num_of_frames, height, width, channels = frames.shape
frame_list = []
for i in range(args.max_num_frames):
frame_list.append(Image.fromarray(frames[i]))
# apply normalization, output tensor (C x T x H x W) in the range [0, 1.0]
crop_frames = raw_video_prcoess(frame_list)
# (C x T x H x W) --> (T x C x H x W)
crop_frames = crop_frames.permute(1, 0, 2, 3)
return crop_frames
def inference(args, video_path, model, tokenizer, tensorizer):
cls_token_id, sep_token_id, pad_token_id, mask_token_id, period_token_id = \
tokenizer.convert_tokens_to_ids([tokenizer.cls_token, tokenizer.sep_token,
tokenizer.pad_token, tokenizer.mask_token, '.'])
model.float()
model.eval()
frames = _online_video_decode(args, video_path)
preproc_frames = _transforms(args, frames)
data_sample = tensorizer.tensorize_example_e2e('', preproc_frames, text_b='')
data_sample = tuple(t.to(args.device) for t in data_sample)
with torch.no_grad():
inputs = {'is_decode': True,
'input_ids': data_sample[0][None,:], 'attention_mask': data_sample[1][None,:],
'token_type_ids': data_sample[2][None,:], 'img_feats': data_sample[3][None,:],
'masked_pos': data_sample[4][None,:],
'do_sample': False,
'bos_token_id': cls_token_id,
'pad_token_id': pad_token_id,
'eos_token_ids': [sep_token_id],
'mask_token_id': mask_token_id,
# for adding od labels
'add_od_labels': args.add_od_labels, 'od_labels_start_posid': args.max_seq_a_length,
# hyperparameters of beam search
'max_length': args.max_gen_length if not args.use_sep_cap else args.max_gen_length*2,
'use_sep_cap': args.use_sep_cap,
'num_beams': args.num_beams,
"temperature": args.temperature,
"top_k": args.top_k,
"top_p": args.top_p,
"repetition_penalty": args.repetition_penalty,
"length_penalty": args.length_penalty,
"num_return_sequences": args.num_return_sequences,
"num_keep_best": args.num_keep_best,
}
tic = time.time()
outputs = model(**inputs)
time_meter = time.time() - tic
all_caps = outputs[0] # batch_size * num_keep_best * max_len
all_confs = torch.exp(outputs[1])
for caps, confs in zip(all_caps, all_confs):
for cap, conf in zip(caps, confs):
cap = tokenizer.decode(cap.tolist(), skip_special_tokens=True)
logger.info(f"Prediction: {cap}")
logger.info(f"Conf: {conf.item()}")
logger.info("Note that this is prediction of the first five seconds(0-5s) of the video, you can change the time in src/tasks/run_caption_VidSwinBert_inference.py")
logger.info(f"Inference model computing time: {time_meter} seconds")
def check_arguments(args):
# shared basic checks
basic_check_arguments(args)
# additional sanity check:
args.max_img_seq_length = int((args.max_num_frames/2)*(int(args.img_res)/32)*(int(args.img_res)/32))
if args.freeze_backbone or args.backbone_coef_lr == 0:
args.backbone_coef_lr = 0
args.freeze_backbone = True
if 'reload_pretrained_swin' not in args.keys():
args.reload_pretrained_swin = False
if not len(args.pretrained_checkpoint) and args.reload_pretrained_swin:
logger.info("No pretrained_checkpoint to be loaded, disable --reload_pretrained_swin")
args.reload_pretrained_swin = False
if args.learn_mask_enabled==True and args.attn_mask_type != 'learn_without_crossattn' and args.attn_mask_type != 'learn_with_swap_crossattn':
args.attn_mask_type = 'learn_vid_att'
def update_existing_config_for_inference(args):
''' load swinbert args for evaluation and inference
'''
assert args.do_test or args.do_eval
checkpoint = args.eval_model_dir
try:
json_path = op.join(checkpoint, os.pardir, 'log', 'args.json')
f = open(json_path,'r')
json_data = json.load(f)
from easydict import EasyDict
train_args = EasyDict(json_data)
except Exception as e:
train_args = torch.load(op.join(checkpoint, 'training_args.bin'))
train_args.eval_model_dir = args.eval_model_dir
train_args.resume_checkpoint = args.eval_model_dir + 'model.bin'
train_args.model_name_or_path = 'bert-base-uncased'
train_args.do_train = False
train_args.do_eval = True
train_args.do_signal_eval = True if hasattr(args, 'do_signal_eval') and args.do_signal_eval else False
train_args.do_test = True
train_args.val_yaml = args.val_yaml
train_args.test_video_fname = args.test_video_fname
train_args.use_car_sensor = True if hasattr(args, 'use_car_sensor') and args.use_car_sensor else False
train_args.multitask = True if hasattr(args, 'multitask') and args.multitask else False
return train_args
def get_custom_args(base_config):
parser = base_config.parser
parser.add_argument('--max_num_frames', type=int, default=32)
parser.add_argument('--img_res', type=int, default=224)
parser.add_argument('--patch_size', type=int, default=32)
parser.add_argument("--grid_feat", type=str_to_bool, nargs='?', const=True, default=True)
parser.add_argument("--kinetics", type=str, default='400', help="400 or 600")
parser.add_argument("--pretrained_2d", type=str_to_bool, nargs='?', const=True, default=False)
parser.add_argument("--vidswin_size", type=str, default='base')
parser.add_argument('--freeze_backbone', type=str_to_bool, nargs='?', const=True, default=False)
parser.add_argument('--use_checkpoint', type=str_to_bool, nargs='?', const=True, default=False)
parser.add_argument('--backbone_coef_lr', type=float, default=0.001)
parser.add_argument("--reload_pretrained_swin", type=str_to_bool, nargs='?', const=True, default=False)
parser.add_argument('--learn_mask_enabled', type=str_to_bool, nargs='?', const=True, default=False)
parser.add_argument('--loss_sparse_w', type=float, default=0)
parser.add_argument('--loss_sensor_w', type=float, default=0)
parser.add_argument('--sparse_mask_soft2hard', type=str_to_bool, nargs='?', const=True, default=False)
parser.add_argument('--transfer_method', type=int, default=-1,
help="0: load all SwinBERT pre-trained weights, 1: load only pre-trained sparse mask")
parser.add_argument('--att_mask_expansion', type=int, default=-1,
help="-1: random init, 0: random init and then diag-based copy, 1: interpolation")
parser.add_argument('--resume_checkpoint', type=str, default='None')
parser.add_argument('--test_video_fname', type=str, default='None')
args = base_config.parse_args()
return args
def main(args):
args = update_existing_config_for_inference(args)
# global training_saver
args.device = torch.device(args.device)
# Setup CUDA, GPU & distributed training
dist_init(args)
check_arguments(args)
set_seed(args.seed, 0)
fp16_trainning = None
logger.info(
"device: {}, n_gpu: {}, rank: {}, "
"16-bits training: {}".format(
args.device, args.num_gpus, get_rank(), fp16_trainning))
if not is_main_process():
logger.disabled = True
logger.info(f"Pytorch version is: {torch.__version__}")
logger.info(f"Cuda version is: {torch.version.cuda}")
logger.info(f"cuDNN version is : {torch.backends.cudnn.version()}" )
# Get Video Swin model
swin_model = get_swin_model(args)
# Get BERT and tokenizer
bert_model, config, tokenizer = get_bert_model(args)
# build SwinBERT based on training configs
vl_transformer = VideoTransformer(args, config, swin_model, bert_model)
vl_transformer.freeze_backbone(freeze=args.freeze_backbone)
# load weights for inference
logger.info(f"Loading state dict from checkpoint {args.resume_checkpoint}")
cpu_device = torch.device('cpu')
pretrained_model = torch.load(args.resume_checkpoint, map_location=cpu_device)
if isinstance(pretrained_model, dict):
vl_transformer.load_state_dict(pretrained_model, strict=False)
else:
vl_transformer.load_state_dict(pretrained_model.state_dict(), strict=False)
vl_transformer.to(args.device)
vl_transformer.eval()
tensorizer = build_tensorizer(args, tokenizer, is_train=False)
inference(args, args.test_video_fname, vl_transformer, tokenizer, tensorizer)
if __name__ == "__main__":
shared_configs.shared_video_captioning_config(cbs=True, scst=True)
args = get_custom_args(shared_configs)
main(args)