-
Notifications
You must be signed in to change notification settings - Fork 44
/
Copy pathoptions.py
237 lines (199 loc) · 5.88 KB
/
options.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
from dataclasses import dataclass, field
from typing import Optional
@dataclass
class GenerationArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
"""
min_length: Optional[int] = field(
default=10,
metadata={
"help": "minimal generation length"
},
)
max_length: Optional[int] = field(
default=128,
metadata={
"help": "max generation length"
},
)
num_beams: Optional[int] = field(
default=5,
metadata={
"help": "minimal generation length"
},
)
no_repeat_ngram_size: Optional[int] = field(
default=0,
metadata={
"help": "minimal generation length"
},
)
length_penalty: Optional[float] = field(
default=1.0,
metadata={
"help": "length penalty"
},
)
@dataclass
class TuneArguments:
attn_mode: Optional[str] = field(
default="none",
metadata={
"choices": ["prefix", "prefix_nomlp",
"none", "bitfit", "lora", "adapter",
"prompt_tuning"], \
"help": "config for attention, none to disable; \
prefix: mlp reparameterization to output prefix P; \
prefix_nomlp: prefix P as learned params; \
adapter: adapter mode; \
bitfit: the bitfit baseline; \
lora: the lora baseline; \
prompt_tuning: the prompt tuning baseline",
},
)
attn_option: Optional[str] = field(
default="concat",
metadata={
"choices": ["none",
"concat",
"cross_attn",
"cross_attn_noln",
"cross_attn_relu",
"parallel",
"sequential",
], \
"help": "specific attn configs; \
concat: concat prefix to self, this is prefix tuning baseline; \
cross_attn_noln: prefix tuning with vanilla add composition (instead of gated add) \
cross_attn: cross_attn_noln plus a layernorm layer \
cross_attn_relu: basically multi-head adapter; \
parallel: parallel insertion form; need to be used under 'adapter' mode; \
sequential: sequential insertion form; need to be used under 'adapter' mode;",
},
)
attn_composition: Optional[str] = field(
default="add",
metadata={
"choices": ["add", "gate_add"],
"help": "the composition function \
add: vanilla adding; \
gate_add: gated adding like prefix tuning"
},
)
ffn_mode: Optional[str] = field(
default="none",
metadata={
"choices": ["adapter", "none", "lora"],
"help": "config for ffn, none to disable; \
adapter: adapter mode; \
lora: the lora baseline",
},
)
ffn_option: Optional[str] = field(
default="none",
metadata={
"choices": ["parallel", "sequential", "pfeiffer", "none"], \
"help": "specific ffn configs; \
parallel: parallel insertion form; \
sequential: sequential insertion form; \
pfeiffer: the Pfeiffer adapter config"
},
)
ffn_adapter_layernorm_option: Optional[str] = field(
default="in",
metadata={
"choices": ["in", "out", "none"],
"help": "ffn adapter layernorm options; \
none: no layernorm; \
in: layernorm applied to input; \
out: layernorm applied to output"
},
)
ffn_adapter_init_option: Optional[str] = field(
default="bert",
metadata={
"choices": ["bert", "lora"],
"help": "ffn adapter option"
},
)
ffn_adapter_scalar: Optional[str] = field(
default="1",
metadata={
"help": "the scaling hyperparam for scaled adding composition; \
set to 'learnable_scalar' to learn this as a parameter"
},
)
mid_dim: Optional[int] = field(
default=800,
metadata={
"help": ""
},
)
attn_bn: Optional[int] = field(
default=200,
metadata={
"help": "the attention bottleneck dimension"
},
)
ffn_bn: Optional[int] = field(
default=-1,
metadata={
"help": "the ffn bottleneck dimension"
},
)
prefix_dropout: Optional[float] = field(
default=0.0,
metadata={
"help": ""
},
)
unfreeze_params: Optional[str] = field(
default="ef_",
metadata={
"help": "param names that contain the string will \
be unfreezed, all other params will be freezed"
},
)
load_path: Optional[str] = field(
default="",
metadata={
"help": ""
},
)
lora_alpha: Optional[float] = field(
default=32.0,
metadata={
"help": "scaling: alpha / r"
},
)
lora_dropout: Optional[float] = field(
default=0.0,
metadata={
"help": "scaling: alpha / r"
},
)
lora_init: Optional[str] = field(
default="lora",
metadata={
"choices": ["bert", "lora"],
"help": ""
},
)
@dataclass
class MBARTArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
"""
dropout: Optional[float] = field(
default=0.3,
metadata={
"help": ""
},
)
attention_dropout: Optional[float] = field(
default=0.1,
metadata={
"help": ""
},
)