forked from berkeleydeeprlcourse/homework
-
Notifications
You must be signed in to change notification settings - Fork 1
/
tf_util.py
494 lines (414 loc) · 17.4 KB
/
tf_util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
import numpy as np
import tensorflow as tf # pylint: ignore-module
#import builtins
import functools
import copy
import os
import collections
# ================================================================
# Import all names into common namespace
# ================================================================
clip = tf.clip_by_value
# Make consistent with numpy
# ----------------------------------------
def sum(x, axis=None, keepdims=False):
return tf.reduce_sum(x, reduction_indices=None if axis is None else [axis], keep_dims = keepdims)
def mean(x, axis=None, keepdims=False):
return tf.reduce_mean(x, reduction_indices=None if axis is None else [axis], keep_dims = keepdims)
def var(x, axis=None, keepdims=False):
meanx = mean(x, axis=axis, keepdims=keepdims)
return mean(tf.square(x - meanx), axis=axis, keepdims=keepdims)
def std(x, axis=None, keepdims=False):
return tf.sqrt(var(x, axis=axis, keepdims=keepdims))
def max(x, axis=None, keepdims=False):
return tf.reduce_max(x, reduction_indices=None if axis is None else [axis], keep_dims = keepdims)
def min(x, axis=None, keepdims=False):
return tf.reduce_min(x, reduction_indices=None if axis is None else [axis], keep_dims = keepdims)
def concatenate(arrs, axis=0):
return tf.concat(axis, arrs)
def argmax(x, axis=None):
return tf.argmax(x, dimension=axis)
def switch(condition, then_expression, else_expression):
'''Switches between two operations depending on a scalar value (int or bool).
Note that both `then_expression` and `else_expression`
should be symbolic tensors of the *same shape*.
# Arguments
condition: scalar tensor.
then_expression: TensorFlow operation.
else_expression: TensorFlow operation.
'''
x_shape = copy.copy(then_expression.get_shape())
x = tf.cond(tf.cast(condition, 'bool'),
lambda: then_expression,
lambda: else_expression)
x.set_shape(x_shape)
return x
# Extras
# ----------------------------------------
def l2loss(params):
if len(params) == 0:
return tf.constant(0.0)
else:
return tf.add_n([sum(tf.square(p)) for p in params])
def lrelu(x, leak=0.2):
f1 = 0.5 * (1 + leak)
f2 = 0.5 * (1 - leak)
return f1 * x + f2 * abs(x)
def categorical_sample_logits(X):
# https://github.com/tensorflow/tensorflow/issues/456
U = tf.random_uniform(tf.shape(X))
return argmax(X - tf.log(-tf.log(U)), axis=1)
# ================================================================
# Global session
# ================================================================
def get_session():
return tf.get_default_session()
def single_threaded_session():
tf_config = tf.ConfigProto(
inter_op_parallelism_threads=1,
intra_op_parallelism_threads=1)
return tf.Session(config=tf_config)
def make_session(num_cpu):
tf_config = tf.ConfigProto(
inter_op_parallelism_threads=num_cpu,
intra_op_parallelism_threads=num_cpu)
return tf.Session(config=tf_config)
ALREADY_INITIALIZED = set()
def initialize():
new_variables = set(tf.all_variables()) - ALREADY_INITIALIZED
get_session().run(tf.variables_initializer(new_variables))
ALREADY_INITIALIZED.update(new_variables)
def eval(expr, feed_dict=None):
if feed_dict is None: feed_dict = {}
return get_session().run(expr, feed_dict=feed_dict)
def set_value(v, val):
get_session().run(v.assign(val))
def load_state(fname):
saver = tf.train.Saver()
saver.restore(get_session(), fname)
def save_state(fname):
os.makedirs(os.path.dirname(fname), exist_ok=True)
saver = tf.train.Saver()
saver.save(get_session(), fname)
# ================================================================
# Model components
# ================================================================
def normc_initializer(std=1.0):
def _initializer(shape, dtype=None, partition_info=None): #pylint: disable=W0613
out = np.random.randn(*shape).astype(np.float32)
out *= std / np.sqrt(np.square(out).sum(axis=0, keepdims=True))
return tf.constant(out)
return _initializer
def conv2d(x, num_filters, name, filter_size=(3, 3), stride=(1, 1), pad="SAME", dtype=tf.float32, collections=None,
summary_tag=None):
with tf.variable_scope(name):
stride_shape = [1, stride[0], stride[1], 1]
filter_shape = [filter_size[0], filter_size[1], int(x.get_shape()[3]), num_filters]
# there are "num input feature maps * filter height * filter width"
# inputs to each hidden unit
fan_in = intprod(filter_shape[:3])
# each unit in the lower layer receives a gradient from:
# "num output feature maps * filter height * filter width" /
# pooling size
fan_out = intprod(filter_shape[:2]) * num_filters
# initialize weights with random weights
w_bound = np.sqrt(6. / (fan_in + fan_out))
w = tf.get_variable("W", filter_shape, dtype, tf.random_uniform_initializer(-w_bound, w_bound),
collections=collections)
b = tf.get_variable("b", [1, 1, 1, num_filters], initializer=tf.zeros_initializer,
collections=collections)
if summary_tag is not None:
tf.image_summary(summary_tag,
tf.transpose(tf.reshape(w, [filter_size[0], filter_size[1], -1, 1]),
[2, 0, 1, 3]),
max_images=10)
return tf.nn.conv2d(x, w, stride_shape, pad) + b
def dense(x, size, name, weight_init=None, bias=True):
w = tf.get_variable(name + "/w", [x.get_shape()[1], size], initializer=weight_init)
ret = tf.matmul(x, w)
if bias:
b = tf.get_variable(name + "/b", [size], initializer=tf.zeros_initializer)
return ret + b
else:
return ret
def wndense(x, size, name, init_scale=1.0):
v = tf.get_variable(name + "/V", [int(x.get_shape()[1]), size],
initializer=tf.random_normal_initializer(0, 0.05))
g = tf.get_variable(name + "/g", [size], initializer=tf.constant_initializer(init_scale))
b = tf.get_variable(name + "/b", [size], initializer=tf.constant_initializer(0.0))
# use weight normalization (Salimans & Kingma, 2016)
x = tf.matmul(x, v)
scaler = g / tf.sqrt(sum(tf.square(v), axis=0, keepdims=True))
return tf.reshape(scaler, [1, size]) * x + tf.reshape(b, [1, size])
def densenobias(x, size, name, weight_init=None):
return dense(x, size, name, weight_init=weight_init, bias=False)
def dropout(x, pkeep, phase=None, mask=None):
mask = tf.floor(pkeep + tf.random_uniform(tf.shape(x))) if mask is None else mask
if phase is None:
return mask * x
else:
return switch(phase, mask*x, pkeep*x)
def batchnorm(x, name, phase, updates, gamma=0.96):
k = x.get_shape()[1]
runningmean = tf.get_variable(name+"/mean", shape=[1, k], initializer=tf.constant_initializer(0.0), trainable=False)
runningvar = tf.get_variable(name+"/var", shape=[1, k], initializer=tf.constant_initializer(1e-4), trainable=False)
testy = (x - runningmean) / tf.sqrt(runningvar)
mean_ = mean(x, axis=0, keepdims=True)
var_ = mean(tf.square(x), axis=0, keepdims=True)
std = tf.sqrt(var_)
trainy = (x - mean_) / std
updates.extend([
tf.assign(runningmean, runningmean * gamma + mean_ * (1 - gamma)),
tf.assign(runningvar, runningvar * gamma + var_ * (1 - gamma))
])
y = switch(phase, trainy, testy)
out = y * tf.get_variable(name+"/scaling", shape=[1, k], initializer=tf.constant_initializer(1.0), trainable=True)\
+ tf.get_variable(name+"/translation", shape=[1,k], initializer=tf.constant_initializer(0.0), trainable=True)
return out
# ================================================================
# Basic Stuff
# ================================================================
def function(inputs, outputs, updates=None, givens=None):
if isinstance(outputs, list):
return _Function(inputs, outputs, updates, givens=givens)
elif isinstance(outputs, (dict, collections.OrderedDict)):
f = _Function(inputs, outputs.values(), updates, givens=givens)
return lambda *inputs : type(outputs)(zip(outputs.keys(), f(*inputs)))
else:
f = _Function(inputs, [outputs], updates, givens=givens)
return lambda *inputs : f(*inputs)[0]
class _Function(object):
def __init__(self, inputs, outputs, updates, givens, check_nan=False):
assert all(len(i.op.inputs)==0 for i in inputs), "inputs should all be placeholders"
self.inputs = inputs
updates = updates or []
self.update_group = tf.group(*updates)
self.outputs_update = list(outputs) + [self.update_group]
self.givens = {} if givens is None else givens
self.check_nan = check_nan
def __call__(self, *inputvals):
assert len(inputvals) == len(self.inputs)
feed_dict = dict(zip(self.inputs, inputvals))
feed_dict.update(self.givens)
results = get_session().run(self.outputs_update, feed_dict=feed_dict)[:-1]
if self.check_nan:
if any(np.isnan(r).any() for r in results):
raise RuntimeError("Nan detected")
return results
def mem_friendly_function(nondata_inputs, data_inputs, outputs, batch_size):
if isinstance(outputs, list):
return _MemFriendlyFunction(nondata_inputs, data_inputs, outputs, batch_size)
else:
f = _MemFriendlyFunction(nondata_inputs, data_inputs, [outputs], batch_size)
return lambda *inputs : f(*inputs)[0]
class _MemFriendlyFunction(object):
def __init__(self, nondata_inputs, data_inputs, outputs, batch_size):
self.nondata_inputs = nondata_inputs
self.data_inputs = data_inputs
self.outputs = list(outputs)
self.batch_size = batch_size
def __call__(self, *inputvals):
assert len(inputvals) == len(self.nondata_inputs) + len(self.data_inputs)
nondata_vals = inputvals[0:len(self.nondata_inputs)]
data_vals = inputvals[len(self.nondata_inputs):]
feed_dict = dict(zip(self.nondata_inputs, nondata_vals))
n = data_vals[0].shape[0]
for v in data_vals[1:]:
assert v.shape[0] == n
for i_start in range(0, n, self.batch_size):
slice_vals = [v[i_start:min(i_start+self.batch_size, n)] for v in data_vals]
for (var,val) in zip(self.data_inputs, slice_vals):
feed_dict[var]=val
results = tf.get_default_session().run(self.outputs, feed_dict=feed_dict)
if i_start==0:
sum_results = results
else:
for i in range(len(results)):
sum_results[i] = sum_results[i] + results[i]
for i in range(len(results)):
sum_results[i] = sum_results[i] / n
return sum_results
# ================================================================
# Modules
# ================================================================
class Module(object):
def __init__(self, name):
self.name = name
self.first_time = True
self.scope = None
self.cache = {}
def __call__(self, *args):
if args in self.cache:
print("(%s) retrieving value from cache"%self.name)
return self.cache[args]
with tf.variable_scope(self.name, reuse=not self.first_time):
scope = tf.get_variable_scope().name
if self.first_time:
self.scope = scope
print("(%s) running function for the first time"%self.name)
else:
assert self.scope == scope, "Tried calling function with a different scope"
print("(%s) running function on new inputs"%self.name)
self.first_time = False
out = self._call(*args)
self.cache[args] = out
return out
def _call(self, *args):
raise NotImplementedError
@property
def trainable_variables(self):
assert self.scope is not None, "need to call module once before getting variables"
return tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, self.scope)
@property
def variables(self):
assert self.scope is not None, "need to call module once before getting variables"
return tf.get_collection(tf.GraphKeys.VARIABLES, self.scope)
def module(name):
@functools.wraps
def wrapper(f):
class WrapperModule(Module):
def _call(self, *args):
return f(*args)
return WrapperModule(name)
return wrapper
# ================================================================
# Graph traversal
# ================================================================
VARIABLES = {}
def get_parents(node):
return node.op.inputs
def topsorted(outputs):
"""
Topological sort via non-recursive depth-first search
"""
assert isinstance(outputs, (list,tuple))
marks = {}
out = []
stack = [] #pylint: disable=W0621
# i: node
# jidx = number of children visited so far from that node
# marks: state of each node, which is one of
# 0: haven't visited
# 1: have visited, but not done visiting children
# 2: done visiting children
for x in outputs:
stack.append((x,0))
while stack:
(i,jidx) = stack.pop()
if jidx == 0:
m = marks.get(i,0)
if m == 0:
marks[i] = 1
elif m == 1:
raise ValueError("not a dag")
else:
continue
ps = get_parents(i)
if jidx == len(ps):
marks[i] = 2
out.append(i)
else:
stack.append((i,jidx+1))
j = ps[jidx]
stack.append((j,0))
return out
# ================================================================
# Flat vectors
# ================================================================
def var_shape(x):
out = [k.value for k in x.get_shape()]
assert all(isinstance(a, int) for a in out), \
"shape function assumes that shape is fully known"
return out
def numel(x):
return intprod(var_shape(x))
def intprod(x):
return int(np.prod(x))
def flatgrad(loss, var_list):
grads = tf.gradients(loss, var_list)
return tf.concat(0, [tf.reshape(grad, [numel(v)])
for (v, grad) in zip(var_list, grads)])
class SetFromFlat(object):
def __init__(self, var_list, dtype=tf.float32):
assigns = []
shapes = list(map(var_shape, var_list))
total_size = np.sum([intprod(shape) for shape in shapes])
self.theta = theta = tf.placeholder(dtype,[total_size])
start=0
assigns = []
for (shape,v) in zip(shapes,var_list):
size = intprod(shape)
assigns.append(tf.assign(v, tf.reshape(theta[start:start+size],shape)))
start+=size
self.op = tf.group(*assigns)
def __call__(self, theta):
get_session().run(self.op, feed_dict={self.theta:theta})
class GetFlat(object):
def __init__(self, var_list):
self.op = tf.concat(0, [tf.reshape(v, [numel(v)]) for v in var_list])
def __call__(self):
return get_session().run(self.op)
# ================================================================
# Misc
# ================================================================
def fancy_slice_2d(X, inds0, inds1):
"""
like numpy X[inds0, inds1]
XXX this implementation is bad
"""
inds0 = tf.cast(inds0, tf.int64)
inds1 = tf.cast(inds1, tf.int64)
shape = tf.cast(tf.shape(X), tf.int64)
ncols = shape[1]
Xflat = tf.reshape(X, [-1])
return tf.gather(Xflat, inds0 * ncols + inds1)
def scope_vars(scope, trainable_only):
"""
Get variables inside a scope
The scope can be specified as a string
"""
return tf.get_collection(
tf.GraphKeys.TRAINABLE_VARIABLES if trainable_only else tf.GraphKeys.VARIABLES,
scope=scope if isinstance(scope, str) else scope.name
)
def lengths_to_mask(lengths_b, max_length):
"""
Turns a vector of lengths into a boolean mask
Args:
lengths_b: an integer vector of lengths
max_length: maximum length to fill the mask
Returns:
a boolean array of shape (batch_size, max_length)
row[i] consists of True repeated lengths_b[i] times, followed by False
"""
lengths_b = tf.convert_to_tensor(lengths_b)
assert lengths_b.get_shape().ndims == 1
mask_bt = tf.expand_dims(tf.range(max_length), 0) < tf.expand_dims(lengths_b, 1)
return mask_bt
def in_session(f):
@functools.wraps(f)
def newfunc(*args, **kwargs):
with tf.Session():
f(*args, **kwargs)
return newfunc
_PLACEHOLDER_CACHE = {} # name -> (placeholder, dtype, shape)
def get_placeholder(name, dtype, shape):
print("calling get_placeholder", name)
if name in _PLACEHOLDER_CACHE:
out, dtype1, shape1 = _PLACEHOLDER_CACHE[name]
assert dtype1==dtype and shape1==shape
return out
else:
out = tf.placeholder(dtype=dtype, shape=shape, name=name)
_PLACEHOLDER_CACHE[name] = (out,dtype,shape)
return out
def get_placeholder_cached(name):
return _PLACEHOLDER_CACHE[name][0]
def flattenallbut0(x):
return tf.reshape(x, [-1, intprod(x.get_shape().as_list()[1:])])
def reset():
global _PLACEHOLDER_CACHE
global VARIABLES
_PLACEHOLDER_CACHE = {}
VARIABLES = {}
tf.reset_default_graph()