-
Notifications
You must be signed in to change notification settings - Fork 259
/
pyramid_dit_for_video_gen_pipeline.py
1279 lines (1065 loc) · 55.6 KB
/
pyramid_dit_for_video_gen_pipeline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import torch
import os
import gc
import sys
import torch.nn as nn
import torch.nn.functional as F
from collections import OrderedDict
from einops import rearrange
from diffusers.utils.torch_utils import randn_tensor
import numpy as np
import math
import random
import PIL
from PIL import Image
from tqdm import tqdm
from torchvision import transforms
from copy import deepcopy
from typing import Any, Callable, Dict, List, Optional, Union
from accelerate import Accelerator, cpu_offload
from diffusion_schedulers import PyramidFlowMatchEulerDiscreteScheduler
from video_vae.modeling_causal_vae import CausalVideoVAE
from trainer_misc import (
all_to_all,
is_sequence_parallel_initialized,
get_sequence_parallel_group,
get_sequence_parallel_group_rank,
get_sequence_parallel_rank,
get_sequence_parallel_world_size,
get_rank,
)
from .mmdit_modules import (
PyramidDiffusionMMDiT,
SD3TextEncoderWithMask,
)
from .flux_modules import (
PyramidFluxTransformer,
FluxTextEncoderWithMask,
)
def compute_density_for_timestep_sampling(
weighting_scheme: str, batch_size: int, logit_mean: float = None, logit_std: float = None, mode_scale: float = None
):
if weighting_scheme == "logit_normal":
# See 3.1 in the SD3 paper ($rf/lognorm(0.00,1.00)$).
u = torch.normal(mean=logit_mean, std=logit_std, size=(batch_size,), device="cpu")
u = torch.nn.functional.sigmoid(u)
elif weighting_scheme == "mode":
u = torch.rand(size=(batch_size,), device="cpu")
u = 1 - u - mode_scale * (torch.cos(math.pi * u / 2) ** 2 - 1 + u)
else:
u = torch.rand(size=(batch_size,), device="cpu")
return u
def build_pyramid_dit(
model_name : str,
model_path : str,
torch_dtype,
use_flash_attn : bool,
use_mixed_training: bool,
interp_condition_pos: bool = True,
use_gradient_checkpointing: bool = False,
use_temporal_causal: bool = True,
gradient_checkpointing_ratio: float = 0.6,
):
model_dtype = torch.float32 if use_mixed_training else torch_dtype
if model_name == "pyramid_flux":
dit = PyramidFluxTransformer.from_pretrained(
model_path, torch_dtype=model_dtype,
use_gradient_checkpointing=use_gradient_checkpointing,
gradient_checkpointing_ratio=gradient_checkpointing_ratio,
use_flash_attn=use_flash_attn, use_temporal_causal=use_temporal_causal,
interp_condition_pos=interp_condition_pos, axes_dims_rope=[16, 24, 24],
)
elif model_name == "pyramid_mmdit":
dit = PyramidDiffusionMMDiT.from_pretrained(
model_path, torch_dtype=model_dtype, use_gradient_checkpointing=use_gradient_checkpointing,
gradient_checkpointing_ratio=gradient_checkpointing_ratio,
use_flash_attn=use_flash_attn, use_t5_mask=True,
add_temp_pos_embed=True, temp_pos_embed_type='rope',
use_temporal_causal=use_temporal_causal, interp_condition_pos=interp_condition_pos,
)
else:
raise NotImplementedError(f"Unsupported DiT architecture, please set the model_name to `pyramid_flux` or `pyramid_mmdit`")
return dit
def build_text_encoder(
model_name : str,
model_path : str,
torch_dtype,
load_text_encoder: bool = True,
):
# The text encoder
if load_text_encoder:
if model_name == "pyramid_flux":
text_encoder = FluxTextEncoderWithMask(model_path, torch_dtype=torch_dtype)
elif model_name == "pyramid_mmdit":
text_encoder = SD3TextEncoderWithMask(model_path, torch_dtype=torch_dtype)
else:
raise NotImplementedError(f"Unsupported Text Encoder architecture, please set the model_name to `pyramid_flux` or `pyramid_mmdit`")
else:
text_encoder = None
return text_encoder
class PyramidDiTForVideoGeneration:
"""
The pyramid dit for both image and video generation, The running class wrapper
This class is mainly for fixed unit implementation: 1 + n + n + n
"""
def __init__(self, model_path, model_dtype='bf16', model_name='pyramid_mmdit', use_gradient_checkpointing=False,
return_log=True, model_variant="diffusion_transformer_768p", timestep_shift=1.0, stage_range=[0, 1/3, 2/3, 1],
sample_ratios=[1, 1, 1], scheduler_gamma=1/3, use_mixed_training=False, use_flash_attn=False,
load_text_encoder=True, load_vae=True, max_temporal_length=31, frame_per_unit=1, use_temporal_causal=True,
corrupt_ratio=1/3, interp_condition_pos=True, stages=[1, 2, 4], video_sync_group=8, gradient_checkpointing_ratio=0.6, **kwargs,
):
super().__init__()
if model_dtype == 'bf16':
torch_dtype = torch.bfloat16
elif model_dtype == 'fp16':
torch_dtype = torch.float16
else:
torch_dtype = torch.float32
self.stages = stages
self.sample_ratios = sample_ratios
self.corrupt_ratio = corrupt_ratio
dit_path = os.path.join(model_path, model_variant)
# The dit
self.dit = build_pyramid_dit(
model_name, dit_path, torch_dtype,
use_flash_attn=use_flash_attn, use_mixed_training=use_mixed_training,
interp_condition_pos=interp_condition_pos, use_gradient_checkpointing=use_gradient_checkpointing,
use_temporal_causal=use_temporal_causal, gradient_checkpointing_ratio=gradient_checkpointing_ratio,
)
# The text encoder
self.text_encoder = build_text_encoder(
model_name, model_path, torch_dtype, load_text_encoder=load_text_encoder,
)
self.load_text_encoder = load_text_encoder
# The base video vae decoder
if load_vae:
self.vae = CausalVideoVAE.from_pretrained(os.path.join(model_path, 'causal_video_vae'), torch_dtype=torch_dtype, interpolate=False)
# Freeze vae
for parameter in self.vae.parameters():
parameter.requires_grad = False
else:
self.vae = None
self.load_vae = load_vae
# For the image latent
if model_name == "pyramid_flux":
self.vae_shift_factor = -0.04
self.vae_scale_factor = 1 / 1.8726
elif model_name == "pyramid_mmdit":
self.vae_shift_factor = 0.1490
self.vae_scale_factor = 1 / 1.8415
else:
raise NotImplementedError(f"Unsupported model name : {model_name}")
# For the video latent
self.vae_video_shift_factor = -0.2343
self.vae_video_scale_factor = 1 / 3.0986
self.downsample = 8
# Configure the video training hyper-parameters
# The video sequence: one frame + N * unit
self.frame_per_unit = frame_per_unit
self.max_temporal_length = max_temporal_length
assert (max_temporal_length - 1) % frame_per_unit == 0, "The frame number should be divided by the frame number per unit"
self.num_units_per_video = 1 + ((max_temporal_length - 1) // frame_per_unit) + int(sum(sample_ratios))
self.scheduler = PyramidFlowMatchEulerDiscreteScheduler(
shift=timestep_shift, stages=len(self.stages),
stage_range=stage_range, gamma=scheduler_gamma,
)
print(f"The start sigmas and end sigmas of each stage is Start: {self.scheduler.start_sigmas}, End: {self.scheduler.end_sigmas}, Ori_start: {self.scheduler.ori_start_sigmas}")
self.cfg_rate = 0.1
self.return_log = return_log
self.use_flash_attn = use_flash_attn
self.model_name = model_name
self.sequential_offload_enabled = False
self.accumulate_steps = 0
self.video_sync_group = video_sync_group
def _enable_sequential_cpu_offload(self, model):
self.sequential_offload_enabled = True
torch_device = torch.device("cuda")
device_type = torch_device.type
device = torch.device(f"{device_type}:0")
offload_buffers = len(model._parameters) > 0
cpu_offload(model, device, offload_buffers=offload_buffers)
def enable_sequential_cpu_offload(self):
self._enable_sequential_cpu_offload(self.text_encoder)
self._enable_sequential_cpu_offload(self.dit)
def load_checkpoint(self, checkpoint_path, model_key='model', **kwargs):
checkpoint = torch.load(checkpoint_path, map_location='cpu')
dit_checkpoint = OrderedDict()
for key in checkpoint:
if key.startswith('vae') or key.startswith('text_encoder'):
continue
if key.startswith('dit'):
new_key = key.split('.')
new_key = '.'.join(new_key[1:])
dit_checkpoint[new_key] = checkpoint[key]
else:
dit_checkpoint[key] = checkpoint[key]
load_result = self.dit.load_state_dict(dit_checkpoint, strict=True)
print(f"Load checkpoint from {checkpoint_path}, load result: {load_result}")
def load_vae_checkpoint(self, vae_checkpoint_path, model_key='model'):
checkpoint = torch.load(vae_checkpoint_path, map_location='cpu')
checkpoint = checkpoint[model_key]
loaded_checkpoint = OrderedDict()
for key in checkpoint.keys():
if key.startswith('vae.'):
new_key = key.split('.')
new_key = '.'.join(new_key[1:])
loaded_checkpoint[new_key] = checkpoint[key]
load_result = self.vae.load_state_dict(loaded_checkpoint)
print(f"Load the VAE from {vae_checkpoint_path}, load result: {load_result}")
@torch.no_grad()
def add_pyramid_noise(
self,
latents_list,
sample_ratios=[1, 1, 1],
):
"""
add the noise for each pyramidal stage
noting that, this method is a general strategy for pyramid-flow, it
can be used for both image and video training.
You can also use this method to train pyramid-flow with full-sequence
diffusion in video generation (without using temporal pyramid and autoregressive modeling)
Params:
latent_list: [low_res, mid_res, high_res] The vae latents of all stages
sample_ratios: The proportion of each stage in the training batch
"""
noise = torch.randn_like(latents_list[-1])
device = noise.device
dtype = latents_list[-1].dtype
t = noise.shape[2]
stages = len(self.stages)
tot_samples = noise.shape[0]
assert tot_samples % (int(sum(sample_ratios))) == 0
assert stages == len(sample_ratios)
height, width = noise.shape[-2], noise.shape[-1]
noise_list = [noise]
cur_noise = noise
for i_s in range(stages-1):
height //= 2;width //= 2
cur_noise = rearrange(cur_noise, 'b c t h w -> (b t) c h w')
cur_noise = F.interpolate(cur_noise, size=(height, width), mode='bilinear') * 2
cur_noise = rearrange(cur_noise, '(b t) c h w -> b c t h w', t=t)
noise_list.append(cur_noise)
noise_list = list(reversed(noise_list)) # make sure from low res to high res
# To calculate the padding batchsize and column size
batch_size = tot_samples // int(sum(sample_ratios))
column_size = int(sum(sample_ratios))
column_to_stage = {}
i_sum = 0
for i_s, column_num in enumerate(sample_ratios):
for index in range(i_sum, i_sum + column_num):
column_to_stage[index] = i_s
i_sum += column_num
noisy_latents_list = []
ratios_list = []
targets_list = []
timesteps_list = []
training_steps = self.scheduler.config.num_train_timesteps
# from low resolution to high resolution
for index in range(column_size):
i_s = column_to_stage[index]
clean_latent = latents_list[i_s][index::column_size] # [bs, c, t, h, w]
last_clean_latent = None if i_s == 0 else latents_list[i_s-1][index::column_size]
start_sigma = self.scheduler.start_sigmas[i_s]
end_sigma = self.scheduler.end_sigmas[i_s]
if i_s == 0:
start_point = noise_list[i_s][index::column_size]
else:
# Get the upsampled latent
last_clean_latent = rearrange(last_clean_latent, 'b c t h w -> (b t) c h w')
last_clean_latent = F.interpolate(last_clean_latent, size=(last_clean_latent.shape[-2] * 2, last_clean_latent.shape[-1] * 2), mode='nearest')
last_clean_latent = rearrange(last_clean_latent, '(b t) c h w -> b c t h w', t=t)
start_point = start_sigma * noise_list[i_s][index::column_size] + (1 - start_sigma) * last_clean_latent
if i_s == stages - 1:
end_point = clean_latent
else:
end_point = end_sigma * noise_list[i_s][index::column_size] + (1 - end_sigma) * clean_latent
# To sample a timestep
u = compute_density_for_timestep_sampling(
weighting_scheme='random',
batch_size=batch_size,
logit_mean=0.0,
logit_std=1.0,
mode_scale=1.29,
)
indices = (u * training_steps).long() # Totally 1000 training steps per stage
indices = indices.clamp(0, training_steps-1)
timesteps = self.scheduler.timesteps_per_stage[i_s][indices].to(device=device)
ratios = self.scheduler.sigmas_per_stage[i_s][indices].to(device=device)
while len(ratios.shape) < start_point.ndim:
ratios = ratios.unsqueeze(-1)
# interpolate the latent
noisy_latents = ratios * start_point + (1 - ratios) * end_point
last_cond_noisy_sigma = torch.rand(size=(batch_size,), device=device) * self.corrupt_ratio
# [stage1_latent, stage2_latent, ..., stagen_latent], which will be concat after patching
noisy_latents_list.append([noisy_latents.to(dtype)])
ratios_list.append(ratios.to(dtype))
timesteps_list.append(timesteps.to(dtype))
targets_list.append(start_point - end_point) # The standard rectified flow matching objective
return noisy_latents_list, ratios_list, timesteps_list, targets_list
def sample_stage_length(self, num_stages, max_units=None):
max_units_in_training = 1 + ((self.max_temporal_length - 1) // self.frame_per_unit)
cur_rank = get_rank()
self.accumulate_steps = self.accumulate_steps + 1
total_turns = max_units_in_training // self.video_sync_group
update_turn = self.accumulate_steps % total_turns
# # uniformly sampling each position
cur_highres_unit = max(int((cur_rank % self.video_sync_group + 1) + update_turn * self.video_sync_group), 1)
cur_mid_res_unit = max(1 + max_units_in_training - cur_highres_unit, 1)
cur_low_res_unit = cur_mid_res_unit
if max_units is not None:
cur_highres_unit = min(cur_highres_unit, max_units)
cur_mid_res_unit = min(cur_mid_res_unit, max_units)
cur_low_res_unit = min(cur_low_res_unit, max_units)
length_list = [cur_low_res_unit, cur_mid_res_unit, cur_highres_unit]
assert len(length_list) == num_stages
return length_list
@torch.no_grad()
def add_pyramid_noise_with_temporal_pyramid(
self,
latents_list,
sample_ratios=[1, 1, 1],
):
"""
add the noise for each pyramidal stage, used for AR video training with temporal pyramid
Params:
latent_list: [low_res, mid_res, high_res] The vae latents of all stages
sample_ratios: The proportion of each stage in the training batch
"""
stages = len(self.stages)
tot_samples = latents_list[0].shape[0]
device = latents_list[0].device
dtype = latents_list[0].dtype
assert tot_samples % (int(sum(sample_ratios))) == 0
assert stages == len(sample_ratios)
noise = torch.randn_like(latents_list[-1])
t = noise.shape[2]
# To allocate the temporal length of each stage, ensuring the sum == constant
max_units = 1 + (t - 1) // self.frame_per_unit
if is_sequence_parallel_initialized():
max_units_per_sample = torch.LongTensor([max_units]).to(device)
sp_group = get_sequence_parallel_group()
sp_group_size = get_sequence_parallel_world_size()
max_units_per_sample = all_to_all(max_units_per_sample.unsqueeze(1).repeat(1, sp_group_size), sp_group, sp_group_size, scatter_dim=1, gather_dim=0).squeeze(1)
max_units = min(max_units_per_sample.cpu().tolist())
num_units_per_stage = self.sample_stage_length(stages, max_units=max_units) # [The unit number of each stage]
# we needs to sync the length alloc of each sequence parallel group
if is_sequence_parallel_initialized():
num_units_per_stage = torch.LongTensor(num_units_per_stage).to(device)
sp_group_rank = get_sequence_parallel_group_rank()
global_src_rank = sp_group_rank * get_sequence_parallel_world_size()
torch.distributed.broadcast(num_units_per_stage, global_src_rank, group=get_sequence_parallel_group())
num_units_per_stage = num_units_per_stage.tolist()
height, width = noise.shape[-2], noise.shape[-1]
noise_list = [noise]
cur_noise = noise
for i_s in range(stages-1):
height //= 2;width //= 2
cur_noise = rearrange(cur_noise, 'b c t h w -> (b t) c h w')
cur_noise = F.interpolate(cur_noise, size=(height, width), mode='bilinear') * 2
cur_noise = rearrange(cur_noise, '(b t) c h w -> b c t h w', t=t)
noise_list.append(cur_noise)
noise_list = list(reversed(noise_list)) # make sure from low res to high res
# To calculate the batchsize and column size
batch_size = tot_samples // int(sum(sample_ratios))
column_size = int(sum(sample_ratios))
column_to_stage = {}
i_sum = 0
for i_s, column_num in enumerate(sample_ratios):
for index in range(i_sum, i_sum + column_num):
column_to_stage[index] = i_s
i_sum += column_num
noisy_latents_list = []
ratios_list = []
targets_list = []
timesteps_list = []
training_steps = self.scheduler.config.num_train_timesteps
# from low resolution to high resolution
for index in range(column_size):
# First prepare the trainable latent construction
i_s = column_to_stage[index]
clean_latent = latents_list[i_s][index::column_size] # [bs, c, t, h, w]
last_clean_latent = None if i_s == 0 else latents_list[i_s-1][index::column_size]
start_sigma = self.scheduler.start_sigmas[i_s]
end_sigma = self.scheduler.end_sigmas[i_s]
if i_s == 0:
start_point = noise_list[i_s][index::column_size]
else:
# Get the upsampled latent
last_clean_latent = rearrange(last_clean_latent, 'b c t h w -> (b t) c h w')
last_clean_latent = F.interpolate(last_clean_latent, size=(last_clean_latent.shape[-2] * 2, last_clean_latent.shape[-1] * 2), mode='nearest')
last_clean_latent = rearrange(last_clean_latent, '(b t) c h w -> b c t h w', t=t)
start_point = start_sigma * noise_list[i_s][index::column_size] + (1 - start_sigma) * last_clean_latent
if i_s == stages - 1:
end_point = clean_latent
else:
end_point = end_sigma * noise_list[i_s][index::column_size] + (1 - end_sigma) * clean_latent
# To sample a timestep
u = compute_density_for_timestep_sampling(
weighting_scheme='random',
batch_size=batch_size,
logit_mean=0.0,
logit_std=1.0,
mode_scale=1.29,
)
indices = (u * training_steps).long() # Totally 1000 training steps per stage
indices = indices.clamp(0, training_steps-1)
timesteps = self.scheduler.timesteps_per_stage[i_s][indices].to(device=device)
ratios = self.scheduler.sigmas_per_stage[i_s][indices].to(device=device)
noise_ratios = ratios * start_sigma + (1 - ratios) * end_sigma
while len(ratios.shape) < start_point.ndim:
ratios = ratios.unsqueeze(-1)
# interpolate the latent
noisy_latents = ratios * start_point + (1 - ratios) * end_point
# The flow matching object
target_latents = start_point - end_point
# pad the noisy previous
num_units = num_units_per_stage[i_s]
num_units = min(num_units, 1 + (t - 1) // self.frame_per_unit)
actual_frames = 1 + (num_units - 1) * self.frame_per_unit
noisy_latents = noisy_latents[:, :, :actual_frames]
target_latents = target_latents[:, :, :actual_frames]
clean_latent = clean_latent[:, :, :actual_frames]
stage_noise = noise_list[i_s][index::column_size][:, :, :actual_frames]
# only the last latent takes part in training
noisy_latents = noisy_latents[:, :, -self.frame_per_unit:]
target_latents = target_latents[:, :, -self.frame_per_unit:]
last_cond_noisy_sigma = torch.rand(size=(batch_size,), device=device) * self.corrupt_ratio
if num_units == 1:
stage_input = [noisy_latents.to(dtype)]
else:
# add the random noise for the last cond clip
last_cond_latent = clean_latent[:, :, -(2*self.frame_per_unit):-self.frame_per_unit]
while len(last_cond_noisy_sigma.shape) < last_cond_latent.ndim:
last_cond_noisy_sigma = last_cond_noisy_sigma.unsqueeze(-1)
# We adding some noise to corrupt the clean condition
last_cond_latent = last_cond_noisy_sigma * torch.randn_like(last_cond_latent) + (1 - last_cond_noisy_sigma) * last_cond_latent
# concat the corrupted condition and the input noisy latents
stage_input = [noisy_latents.to(dtype), last_cond_latent.to(dtype)]
cur_unit_num = 2
cur_stage = i_s
while cur_unit_num < num_units:
cur_stage = max(cur_stage - 1, 0)
if cur_stage == 0:
break
cur_unit_num += 1
cond_latents = latents_list[cur_stage][index::column_size][:, :, :actual_frames]
cond_latents = cond_latents[:, :, -(cur_unit_num * self.frame_per_unit) : -((cur_unit_num - 1) * self.frame_per_unit)]
cond_latents = last_cond_noisy_sigma * torch.randn_like(cond_latents) + (1 - last_cond_noisy_sigma) * cond_latents
stage_input.append(cond_latents.to(dtype))
if cur_stage == 0 and cur_unit_num < num_units:
cond_latents = latents_list[0][index::column_size][:, :, :actual_frames]
cond_latents = cond_latents[:, :, :-(cur_unit_num * self.frame_per_unit)]
cond_latents = last_cond_noisy_sigma * torch.randn_like(cond_latents) + (1 - last_cond_noisy_sigma) * cond_latents
stage_input.append(cond_latents.to(dtype))
stage_input = list(reversed(stage_input))
noisy_latents_list.append(stage_input)
ratios_list.append(ratios.to(dtype))
timesteps_list.append(timesteps.to(dtype))
targets_list.append(target_latents) # The standard rectified flow matching objective
return noisy_latents_list, ratios_list, timesteps_list, targets_list
@torch.no_grad()
def get_pyramid_latent(self, x, stage_num):
# x is the origin vae latent
vae_latent_list = []
vae_latent_list.append(x)
temp, height, width = x.shape[-3], x.shape[-2], x.shape[-1]
for _ in range(stage_num):
height //= 2
width //= 2
x = rearrange(x, 'b c t h w -> (b t) c h w')
x = torch.nn.functional.interpolate(x, size=(height, width), mode='bilinear')
x = rearrange(x, '(b t) c h w -> b c t h w', t=temp)
vae_latent_list.append(x)
vae_latent_list = list(reversed(vae_latent_list))
return vae_latent_list
@torch.no_grad()
def get_vae_latent(self, video, use_temporal_pyramid=True):
if self.load_vae:
assert video.shape[1] == 3, "The vae is loaded, the input should be raw pixels"
video = self.vae.encode(video).latent_dist.sample() # [b c t h w]
if video.shape[2] == 1:
# is image
video = (video - self.vae_shift_factor) * self.vae_scale_factor
else:
# is video
video[:, :, :1] = (video[:, :, :1] - self.vae_shift_factor) * self.vae_scale_factor
video[:, :, 1:] = (video[:, :, 1:] - self.vae_video_shift_factor) * self.vae_video_scale_factor
# Get the pyramidal stages
vae_latent_list = self.get_pyramid_latent(video, len(self.stages) - 1)
if use_temporal_pyramid:
noisy_latents_list, ratios_list, timesteps_list, targets_list = self.add_pyramid_noise_with_temporal_pyramid(vae_latent_list, self.sample_ratios)
else:
# Only use the spatial pyramidal (without temporal ar)
noisy_latents_list, ratios_list, timesteps_list, targets_list = self.add_pyramid_noise(vae_latent_list, self.sample_ratios)
return noisy_latents_list, ratios_list, timesteps_list, targets_list
@torch.no_grad()
def get_text_embeddings(self, text, rand_idx, device):
if self.load_text_encoder:
batch_size = len(text) # Text is a str list
for idx in range(batch_size):
if rand_idx[idx].item():
text[idx] = ''
return self.text_encoder(text, device) # [b s c]
else:
batch_size = len(text['prompt_embeds'])
for idx in range(batch_size):
if rand_idx[idx].item():
text['prompt_embeds'][idx] = self.null_text_embeds['prompt_embed'].to(device)
text['prompt_attention_mask'][idx] = self.null_text_embeds['prompt_attention_mask'].to(device)
text['pooled_prompt_embeds'][idx] = self.null_text_embeds['pooled_prompt_embed'].to(device)
return text['prompt_embeds'], text['prompt_attention_mask'], text['pooled_prompt_embeds']
def calculate_loss(self, model_preds_list, targets_list):
loss_list = []
for model_pred, target in zip(model_preds_list, targets_list):
# Compute the loss.
loss_weight = torch.ones_like(target)
loss = torch.mean(
(loss_weight.float() * (model_pred.float() - target.float()) ** 2).reshape(target.shape[0], -1),
1,
)
loss_list.append(loss)
diffusion_loss = torch.cat(loss_list, dim=0).mean()
if self.return_log:
log = {}
split="train"
log[f'{split}/loss'] = diffusion_loss.detach()
return diffusion_loss, log
else:
return diffusion_loss, {}
def __call__(self, video, text, identifier=['video'], use_temporal_pyramid=True, accelerator: Accelerator=None):
xdim = video.ndim
device = video.device
if 'video' in identifier:
assert 'image' not in identifier
is_image = False
else:
assert 'video' not in identifier
video = video.unsqueeze(2) # 'b c h w -> b c 1 h w'
is_image = True
# TODO: now have 3 stages, firstly get the vae latents
with torch.no_grad(), accelerator.autocast():
# 10% prob drop the text
batch_size = len(video)
rand_idx = torch.rand((batch_size,)) <= self.cfg_rate
prompt_embeds, prompt_attention_mask, pooled_prompt_embeds = self.get_text_embeddings(text, rand_idx, device)
noisy_latents_list, ratios_list, timesteps_list, targets_list = self.get_vae_latent(video, use_temporal_pyramid=use_temporal_pyramid)
timesteps = torch.cat([timestep.unsqueeze(-1) for timestep in timesteps_list], dim=-1)
timesteps = timesteps.reshape(-1)
assert timesteps.shape[0] == prompt_embeds.shape[0]
# DiT forward
model_preds_list = self.dit(
sample=noisy_latents_list,
timestep_ratio=timesteps,
encoder_hidden_states=prompt_embeds,
encoder_attention_mask=prompt_attention_mask,
pooled_projections=pooled_prompt_embeds,
)
# calculate the loss
return self.calculate_loss(model_preds_list, targets_list)
def prepare_latents(
self,
batch_size,
num_channels_latents,
temp,
height,
width,
dtype,
device,
generator,
):
shape = (
batch_size,
num_channels_latents,
int(temp),
int(height) // self.downsample,
int(width) // self.downsample,
)
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
return latents
def sample_block_noise(self, bs, ch, temp, height, width):
gamma = self.scheduler.config.gamma
dist = torch.distributions.multivariate_normal.MultivariateNormal(torch.zeros(4), torch.eye(4) * (1 + gamma) - torch.ones(4, 4) * gamma)
block_number = bs * ch * temp * (height // 2) * (width // 2)
noise = torch.stack([dist.sample() for _ in range(block_number)]) # [block number, 4]
noise = rearrange(noise, '(b c t h w) (p q) -> b c t (h p) (w q)',b=bs,c=ch,t=temp,h=height//2,w=width//2,p=2,q=2)
return noise
@torch.no_grad()
def generate_one_unit(
self,
latents,
past_conditions, # List of past conditions, contains the conditions of each stage
prompt_embeds,
prompt_attention_mask,
pooled_prompt_embeds,
num_inference_steps,
height,
width,
temp,
device,
dtype,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
is_first_frame: bool = False,
):
stages = self.stages
intermed_latents = []
for i_s in range(len(stages)):
self.scheduler.set_timesteps(num_inference_steps[i_s], i_s, device=device)
timesteps = self.scheduler.timesteps
if i_s > 0:
height *= 2; width *= 2
latents = rearrange(latents, 'b c t h w -> (b t) c h w')
latents = F.interpolate(latents, size=(height, width), mode='nearest')
latents = rearrange(latents, '(b t) c h w -> b c t h w', t=temp)
# Fix the stage
ori_sigma = 1 - self.scheduler.ori_start_sigmas[i_s] # the original coeff of signal
gamma = self.scheduler.config.gamma
alpha = 1 / (math.sqrt(1 + (1 / gamma)) * (1 - ori_sigma) + ori_sigma)
beta = alpha * (1 - ori_sigma) / math.sqrt(gamma)
bs, ch, temp, height, width = latents.shape
noise = self.sample_block_noise(bs, ch, temp, height, width)
noise = noise.to(device=device, dtype=dtype)
latents = alpha * latents + beta * noise # To fix the block artifact
for idx, t in enumerate(timesteps):
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
timestep = t.expand(latent_model_input.shape[0]).to(latent_model_input.dtype)
if is_sequence_parallel_initialized():
# sync the input latent
sp_group_rank = get_sequence_parallel_group_rank()
global_src_rank = sp_group_rank * get_sequence_parallel_world_size()
torch.distributed.broadcast(latent_model_input, global_src_rank, group=get_sequence_parallel_group())
latent_model_input = past_conditions[i_s] + [latent_model_input]
noise_pred = self.dit(
sample=[latent_model_input],
timestep_ratio=timestep,
encoder_hidden_states=prompt_embeds,
encoder_attention_mask=prompt_attention_mask,
pooled_projections=pooled_prompt_embeds,
)
noise_pred = noise_pred[0]
# perform guidance
if self.do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
if is_first_frame:
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
else:
noise_pred = noise_pred_uncond + self.video_guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(
model_output=noise_pred,
timestep=timestep,
sample=latents,
generator=generator,
).prev_sample
intermed_latents.append(latents)
return intermed_latents
@torch.no_grad()
def generate_i2v(
self,
prompt: Union[str, List[str]] = '',
input_image: PIL.Image = None,
temp: int = 1,
num_inference_steps: Optional[Union[int, List[int]]] = 28,
guidance_scale: float = 7.0,
video_guidance_scale: float = 4.0,
min_guidance_scale: float = 2.0,
use_linear_guidance: bool = False,
alpha: float = 0.5,
negative_prompt: Optional[Union[str, List[str]]]="cartoon style, worst quality, low quality, blurry, absolute black, absolute white, low res, extra limbs, extra digits, misplaced objects, mutated anatomy, monochrome, horror",
num_images_per_prompt: Optional[int] = 1,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
output_type: Optional[str] = "pil",
save_memory: bool = True,
cpu_offloading: bool = False, # If true, reload device will be cuda.
inference_multigpu: bool = False,
callback: Optional[Callable[[int, int, Dict], None]] = None,
):
if self.sequential_offload_enabled and not cpu_offloading:
print("Warning: overriding cpu_offloading set to false, as it's needed for sequential cpu offload")
cpu_offloading=True
device = self.device if not cpu_offloading else torch.device("cuda")
dtype = self.dtype
if cpu_offloading:
# skip caring about the text encoder here as its about to be used anyways.
if not self.sequential_offload_enabled:
if str(self.dit.device) != "cpu":
print("(dit) Warning: Do not preload pipeline components (i.e. to cuda) with cpu offloading enabled! Otherwise, a second transfer will occur needlessly taking up time.")
self.dit.to("cpu")
torch.cuda.empty_cache()
if str(self.vae.device) != "cpu":
print("(vae) Warning: Do not preload pipeline components (i.e. to cuda) with cpu offloading enabled! Otherwise, a second transfer will occur needlessly taking up time.")
self.vae.to("cpu")
torch.cuda.empty_cache()
width = input_image.width
height = input_image.height
assert temp % self.frame_per_unit == 0, "The frames should be divided by frame_per unit"
if isinstance(prompt, str):
batch_size = 1
prompt = prompt + ", hyper quality, Ultra HD, 8K" # adding this prompt to improve aesthetics
else:
assert isinstance(prompt, list)
batch_size = len(prompt)
prompt = [_ + ", hyper quality, Ultra HD, 8K" for _ in prompt]
if isinstance(num_inference_steps, int):
num_inference_steps = [num_inference_steps] * len(self.stages)
negative_prompt = negative_prompt or ""
# Get the text embeddings
if cpu_offloading and not self.sequential_offload_enabled:
self.text_encoder.to("cuda")
prompt_embeds, prompt_attention_mask, pooled_prompt_embeds = self.text_encoder(prompt, device)
negative_prompt_embeds, negative_prompt_attention_mask, negative_pooled_prompt_embeds = self.text_encoder(negative_prompt, device)
if cpu_offloading:
if not self.sequential_offload_enabled:
self.text_encoder.to("cpu")
self.vae.to("cuda")
torch.cuda.empty_cache()
if use_linear_guidance:
max_guidance_scale = guidance_scale
guidance_scale_list = [max(max_guidance_scale - alpha * t_, min_guidance_scale) for t_ in range(temp+1)]
print(guidance_scale_list)
self._guidance_scale = guidance_scale
self._video_guidance_scale = video_guidance_scale
if self.do_classifier_free_guidance:
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
pooled_prompt_embeds = torch.cat([negative_pooled_prompt_embeds, pooled_prompt_embeds], dim=0)
prompt_attention_mask = torch.cat([negative_prompt_attention_mask, prompt_attention_mask], dim=0)
if is_sequence_parallel_initialized():
# sync the prompt embedding across multiple GPUs
sp_group_rank = get_sequence_parallel_group_rank()
global_src_rank = sp_group_rank * get_sequence_parallel_world_size()
torch.distributed.broadcast(prompt_embeds, global_src_rank, group=get_sequence_parallel_group())
torch.distributed.broadcast(pooled_prompt_embeds, global_src_rank, group=get_sequence_parallel_group())
torch.distributed.broadcast(prompt_attention_mask, global_src_rank, group=get_sequence_parallel_group())
# Create the initial random noise
num_channels_latents = (self.dit.config.in_channels // 4) if self.model_name == "pyramid_flux" else self.dit.config.in_channels
latents = self.prepare_latents(
batch_size * num_images_per_prompt,
num_channels_latents,
temp,
height,
width,
prompt_embeds.dtype,
device,
generator,
)
temp, height, width = latents.shape[-3], latents.shape[-2], latents.shape[-1]
latents = rearrange(latents, 'b c t h w -> (b t) c h w')
# by defalut, we needs to start from the block noise
for _ in range(len(self.stages)-1):
height //= 2;width //= 2
latents = F.interpolate(latents, size=(height, width), mode='bilinear') * 2
latents = rearrange(latents, '(b t) c h w -> b c t h w', t=temp)
num_units = temp // self.frame_per_unit
stages = self.stages
# encode the image latents
image_transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)),
])
input_image_tensor = image_transform(input_image).unsqueeze(0).unsqueeze(2) # [b c 1 h w]
input_image_latent = (self.vae.encode(input_image_tensor.to(self.vae.device, dtype=self.vae.dtype)).latent_dist.sample() - self.vae_shift_factor) * self.vae_scale_factor # [b c 1 h w]
if is_sequence_parallel_initialized():
# sync the image latent across multiple GPUs
sp_group_rank = get_sequence_parallel_group_rank()
global_src_rank = sp_group_rank * get_sequence_parallel_world_size()
torch.distributed.broadcast(input_image_latent, global_src_rank, group=get_sequence_parallel_group())
generated_latents_list = [input_image_latent] # The generated results
last_generated_latents = input_image_latent
if cpu_offloading:
self.vae.to("cpu")
if not self.sequential_offload_enabled:
self.dit.to("cuda")
torch.cuda.empty_cache()
for unit_index in tqdm(range(1, num_units)):
gc.collect()
torch.cuda.empty_cache()
if callback:
callback(unit_index, num_units)
if use_linear_guidance:
self._guidance_scale = guidance_scale_list[unit_index]
self._video_guidance_scale = guidance_scale_list[unit_index]
# prepare the condition latents
past_condition_latents = []
clean_latents_list = self.get_pyramid_latent(torch.cat(generated_latents_list, dim=2), len(stages) - 1)
for i_s in range(len(stages)):
last_cond_latent = clean_latents_list[i_s][:,:,-self.frame_per_unit:]
stage_input = [torch.cat([last_cond_latent] * 2) if self.do_classifier_free_guidance else last_cond_latent]
# pad the past clean latents
cur_unit_num = unit_index
cur_stage = i_s
cur_unit_ptx = 1
while cur_unit_ptx < cur_unit_num:
cur_stage = max(cur_stage - 1, 0)
if cur_stage == 0:
break
cur_unit_ptx += 1
cond_latents = clean_latents_list[cur_stage][:, :, -(cur_unit_ptx * self.frame_per_unit) : -((cur_unit_ptx - 1) * self.frame_per_unit)]
stage_input.append(torch.cat([cond_latents] * 2) if self.do_classifier_free_guidance else cond_latents)
if cur_stage == 0 and cur_unit_ptx < cur_unit_num:
cond_latents = clean_latents_list[0][:, :, :-(cur_unit_ptx * self.frame_per_unit)]
stage_input.append(torch.cat([cond_latents] * 2) if self.do_classifier_free_guidance else cond_latents)
stage_input = list(reversed(stage_input))
past_condition_latents.append(stage_input)
intermed_latents = self.generate_one_unit(
latents[:,:,(unit_index - 1) * self.frame_per_unit:unit_index * self.frame_per_unit],
past_condition_latents,
prompt_embeds,
prompt_attention_mask,
pooled_prompt_embeds,
num_inference_steps,
height,
width,
self.frame_per_unit,
device,
dtype,
generator,
is_first_frame=False,
)
generated_latents_list.append(intermed_latents[-1])
last_generated_latents = intermed_latents
generated_latents = torch.cat(generated_latents_list, dim=2)
if output_type == "latent":
image = generated_latents
else:
if cpu_offloading:
if not self.sequential_offload_enabled:
self.dit.to("cpu")
self.vae.to("cuda")
torch.cuda.empty_cache()
image = self.decode_latent(generated_latents, save_memory=save_memory, inference_multigpu=inference_multigpu)
if cpu_offloading:
self.vae.to("cpu")
torch.cuda.empty_cache()