-
Notifications
You must be signed in to change notification settings - Fork 0
/
cctv.py
182 lines (135 loc) · 5.95 KB
/
cctv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import face_recognition
import cv2
import numpy as np
import os
import pathlib
import dlib
import sys
#dlib.DLIB_USE_CUDA = True
#when installing dlib , cuda by default enabled
#so dont have to enable again
# Process each video frame at 1/4 resolution (though still display it at full resolution) to enhance performance since original resolution is too big
# Only detect faces in every other frame of video. use process this frame flag to check whether we have to process this frame or not
dir = os.path.join(os.getcwd(),'faces')
list = os.listdir(dir)
#print(list)
prevlen = len(list)
i = 0
video_capture = cv2.VideoCapture(0)
#print('video capture:',video_capture)
known_face_encodings = []
known_face_names = []
imgpath = os.path.join(os.getcwd(),'faces')
#print(imgpath)
for filename in os.listdir(imgpath) :
#print(os.path.join(imgpath , filename))
#print("Filename:",filename)
impath = os.path.join(imgpath , filename)
image = face_recognition.load_image_file(impath)
#print('image:',image)
image_encoding = face_recognition.face_encodings(image)[0]
#print('image encoding:',image_encoding)
known_face_encodings.append(image_encoding)
#print('known face encoding:',known_face_encodings)
temppath = filename
tmp = os.path.splitext(temppath)
#print('temp:',tmp)
#print(tmp[0])
known_face_names.append(tmp[0])
#print('known face names:',known_face_names)
# Initialize some variables
face_locations = []
face_encodings = []
face_names = []
process_this_frame = True
while True:
# Grab a single frame of video
ret, frame = video_capture.read()
# Resize frame of video to 1/4 size for faster face recognition processing
small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25)
# Convert the image from BGR color (which OpenCV uses) to RGB color (which face_recognition uses)
rgb_small_frame = small_frame[:, :, ::-1]
# Only process every other frame of video to save time
if process_this_frame:
# Find all the faces and face encodings in the current frame of video
face_locations = face_recognition.face_locations(rgb_small_frame)
face_encodings = face_recognition.face_encodings(rgb_small_frame, face_locations)
face_names = []
for face_encoding in face_encodings:
# See if the face is a match for the known face(s)
matches = face_recognition.compare_faces(known_face_encodings, face_encoding)
#print('matches:',matches)
name = "Unknown"
#print("matches : ",matches)
#print("name : ",name)
#if len(matches) != 0 :
# print ("Hi Jyo , Test Success")
#else :
# print("cant find jyo :(") :(
# # If a match was found in known_face_encodings, just use the first one.
# if True in matches:
# first_match_index = matches.index(True)
# name = known_face_names[first_match_index]
# Or instead, use the known face with the smallest distance to the new face
face_distances = face_recognition.face_distance(known_face_encodings, face_encoding)
#print("face dist :",face_distances)
#print('face distances:',face_distances)
best_match_index = np.argmin(face_distances)
#print('best match index:',best_match_index)
#print("Best Match Index: ",best_match_index)
if matches[best_match_index]:
name = known_face_names[best_match_index]
face_names.append(name)
print("Detected : ",face_names)
#if face_names[0] == "Unknown":
# continue
process_this_frame = not process_this_frame
#print('face locations:',face_locations)
# Display the results
for (top, right, bottom, left), name in zip(face_locations, face_names):
# Scale back up face locations since the frame we detected in was scaled to 1/4 size
top *= 4
right *= 4
bottom *= 4
left *= 4
# Draw a box around the face
cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), 2)
# Draw a label with a name below the face
cv2.rectangle(frame, (left, bottom - 35), (right, bottom), (0, 0, 255), cv2.FILLED)
font = cv2.FONT_HERSHEY_DUPLEX
cv2.putText(frame, name, (left + 6, bottom - 6), font, 1.0, (255, 255, 255), 1)
# Display the resulting image
cv2.imshow('Video', frame)
#print("name again:",face_names)
########################################## Image Generator
if len(face_names) != 0 and face_names[0] != "Unknown":
#print("save to folder face")
for face in face_names :
path = os.getcwd()
newpath = os.path.join(path,"detected",face)
if not os.path.exists(newpath) :
#print("Creating path for ",face)
os.mkdir(newpath)
name = face + str(i) + ".jpg"
i += 1
facepath = os.path.join(newpath , name)
#print(" face path is : ",facepath)
while os.path.isfile(facepath):
i *= 10000
break
cv2.imwrite(facepath , frame )
#print("path is :",newpath)
dir = os.path.join(os.getcwd(),'faces')
list = os.listdir(dir)
curlen = len(list)
if not prevlen == curlen :
prevlen = curlen
print("New files detected .... Restarting Script with new encondings")
os.execv(sys.executable, ['python'] + sys.argv)
#cv2.imwrite("testsuccess.jpg", frame)
# Hit 'q' on the keyboard to quit!
if cv2.waitKey(1) & 0xFF == ord('q'):
break
# Release handle to the webcam
video_capture.release()
cv2.destroyAllWindows()