Skip to content

Latest commit

 

History

History
60 lines (39 loc) · 1.68 KB

0101.md

File metadata and controls

60 lines (39 loc) · 1.68 KB

⛵   0102   2025/0101 0102

《Mathematical Foundations of Reinforcement Learning》

Source: Book-Mathematical-Foundation-of-Reinforcement-Learning@github

Begin to read the book.

Chapter 1

  • Basic concepts of reinforcement learning
    • State $$\mathcal{S}$$
    • Action $$\mathcal{A}$$
    • State transition $$ p(s_k|s_i, a_j) $$
    • Policy $$ \pi(s_j|a_i) $$
    • Reward $$ p(r=R|s_i,a_j) $$
    • Return
      • return is the sum of reward along a trajectory.
    • MDPs=Markov decision processes
      • Once the policy in an MDP is fixed, the MDP degenerates into an MP (Markov process).

HiDiffusion

Paper: HiDiffusion: Unlocking Higher-Resolution Creativity and Efficiency in Pretrained Diffusion Models

Project page: https://hidiffusion.github.io/

Github: https://github.com/megvii-research/HiDiffusion

  • RAU: Resolution-Aware U-Net
  • RAD: Resolution-Aware Downsampler

StoryDiffusion

Paper: StoryDiffusion: Consistent Self-Attention for Long-Range Image and Video Generation

Github: https://github.com/HVision-NKU/StoryDiffusion

Project page: https://storydiffusion.github.io/

HuggingFace space: https://huggingface.co/spaces/YupengZhou/StoryDiffusion