-
Notifications
You must be signed in to change notification settings - Fork 0
/
predict.py
68 lines (54 loc) · 2.06 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
from chainer import serializers
import numpy as np
from PIL import Image
import os
import argparse
import cv2
from model import FCN
from preprocess import load_data
from color_map import make_color_map
parser = argparse.ArgumentParser(description='Chainer Fully Convolutional Network: predict')
parser.add_argument('--gpu', '-g', default=-1, type=int,
help='GPU ID (negative value indicates CPU)')
parser.add_argument('--image_path', '-i', default=None, type=str)
parser.add_argument('--weight', '-w', default="weight/chainer_fcn.weight", type=str)
parser.add_argument('--classes', default=21, type=int)
parser.add_argument('--clop', "-c", default=True, type=bool)
parser.add_argument('--clopsize', "-s", default=256, type=int)
args = parser.parse_args()
img_name = args.image_path.split("/")[-1].split(".")[0]
color_map = make_color_map()
model = FCN(n_class=args.classes)
serializers.load_npz('weight/chainer_fcn.weight', model)
o = load_data(args.image_path, crop=args.clop, size=args.clopsize, mode="predict")
x = load_data(args.image_path, crop=args.clop, size=args.clopsize, mode="data")
x = np.expand_dims(x, axis=0)
pred = model(x).data
pred = pred[0].argmax(axis=0)
row, col = pred.shape
dst = np.ones((row, col, 3))
for i in range(21):
dst[pred == i] = color_map[i]
img = Image.fromarray(np.uint8(dst))
b,g,r = img.split()
img = Image.merge("RGB", (r, g, b))
trans = Image.new('RGBA', img.size, (0, 0, 0, 0))
w, h = img.size
for x in range(w):
for y in range(h):
pixel = img.getpixel((x, y))
if (pixel[0] == 0 and pixel[1] == 0 and pixel[2] == 0)or \
(pixel[0] == 255 and pixel[1] == 255 and pixel[2] == 255):
continue
trans.putpixel((x, y), pixel)
#o.paste(trans, (0,0), trans)
if not os.path.exists("out"):
os.mkdir("out")
o.save("out/original.jpg")
trans.save("out/pred.png")
o = cv2.imread("out/original.jpg", 1)
p = cv2.imread("out/pred.png", 1)
pred = cv2.addWeighted(o, 0.6, p, 0.4, 0.0)
cv2.imwrite("out/pred_{}.png".format(img_name), pred)
os.remove("out/original.jpg")
os.remove("out/pred.png")