-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathpreprocess.py
183 lines (153 loc) · 6.36 KB
/
preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
# Copyright 2022 (c) Microsoft Corporation. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
# This public codebase switched from the original STFT implementation to HiFi-GAN version to provide compatibility with PriorGrad-acoustic
# The following STFT implementation is based on open-source HiFi-GAN https://github.com/jik876/hifi-gan
# Note: the STFT detail is different to the one used in https://github.com/lmnt-com/diffwave and the PriorGrad ICLR22 paper
# MIT License
#
# Copyright (c) 2020 Jungil Kong
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
import torch
from librosa.filters import mel as librosa_mel_fn
from librosa.util import normalize
from scipy.io.wavfile import read
MAX_WAV_VALUE = 32768.0
mel_basis = {}
hann_window = {}
def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
return torch.log(torch.clamp(x, min=clip_val) * C)
def spectral_normalize_torch(magnitudes):
output = dynamic_range_compression_torch(magnitudes)
return output
# * function to get HiFi-GAN compatible mel-spec with the given audio on-the-fly during training
# * which can remove the preprocessing pipeline of the open-source DiffWave (https://github.com/lmnt-com/diffwave)
def get_mel(audio, params, center=False):
n_fft = params.n_fft
num_mels = params.n_mels
sampling_rate = params.sample_rate
hop_size = params.hop_samples
win_size = params.hop_samples * 4
fmin = params.fmin
fmax = params.fmax
y = audio.unsqueeze(0)
if torch.min(y) < -1.0:
print("min value is ", torch.min(y))
if torch.max(y) > 1.0:
print("max value is ", torch.max(y))
global mel_basis, hann_window
if fmax not in mel_basis:
mel = librosa_mel_fn(
sr=sampling_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax
)
mel_basis[str(fmax) + "_" + str(y.device)] = (
torch.from_numpy(mel).float().to(y.device)
)
hann_window[str(y.device)] = torch.hann_window(win_size).to(y.device)
y = torch.nn.functional.pad(
y.unsqueeze(1),
(int((n_fft - hop_size) / 2), int((n_fft - hop_size) / 2)),
mode="reflect",
)
y = y.squeeze(1)
# complex tensor as default, then use view_as_real for future pytorch compatibility
spec = torch.stft(
y,
n_fft,
hop_length=hop_size,
win_length=win_size,
window=hann_window[str(y.device)],
center=center,
pad_mode="reflect",
normalized=False,
onesided=True,
return_complex=True,
)
spec = torch.view_as_real(spec)
spec = torch.sqrt(spec.pow(2).sum(-1) + (1e-9))
spec = torch.matmul(mel_basis[str(fmax) + "_" + str(y.device)], spec)
spec = spectral_normalize_torch(spec)
return spec
# function to get both audio and mel from filepath. Not used for training (uses on-the-fly mel generation instead).
def get_audio_mel(filepath, params, center=False):
n_fft = params.n_fft
num_mels = params.n_mels
sampling_rate = params.sample_rate
hop_size = params.hop_samples
win_size = params.hop_samples * 4
fmin = params.fmin
fmax = params.fmax
sr, audio = read(filepath)
if params.sample_rate != sr:
raise ValueError(f"Invalid sample rate {sr}.")
# match audio length to self.hop_size * n for evaluation
if (audio.shape[0] % hop_size) != 0:
audio = audio[: -(audio.shape[0] % hop_size)]
audio = audio / MAX_WAV_VALUE
audio = normalize(audio) * 0.95
audio = torch.FloatTensor(audio)
y = audio.unsqueeze(0)
if torch.min(y) < -1.0:
print("min value is ", torch.min(y))
if torch.max(y) > 1.0:
print("max value is ", torch.max(y))
global mel_basis, hann_window
if fmax not in mel_basis:
mel = librosa_mel_fn(sampling_rate, n_fft, num_mels, fmin, fmax)
mel_basis[str(fmax) + "_" + str(y.device)] = (
torch.from_numpy(mel).float().to(y.device)
)
hann_window[str(y.device)] = torch.hann_window(win_size).to(y.device)
y = torch.nn.functional.pad(
y.unsqueeze(1),
(int((n_fft - hop_size) / 2), int((n_fft - hop_size) / 2)),
mode="reflect",
)
y = y.squeeze(1)
# complex tensor as default, then use view_as_real for future pytorch compatibility
spec = torch.stft(
y,
n_fft,
hop_length=hop_size,
win_length=win_size,
window=hann_window[str(y.device)],
center=center,
pad_mode="reflect",
normalized=False,
onesided=True,
return_complex=True,
)
spec = torch.view_as_real(spec)
spec = torch.sqrt(spec.pow(2).sum(-1) + (1e-9))
spec = torch.matmul(mel_basis[str(fmax) + "_" + str(y.device)], spec)
spec = spectral_normalize_torch(spec)
assert audio.shape[0] == spec.shape[2] * hop_size
return audio.unsqueeze(0), spec