Skip to content

Latest commit

 

History

History

segmentation

Learning in the Frequency Domain

Our work is based on mmdetection. mmdetection is an open source object detection toolbox based on PyTorch. It is a part of the open-mmlab project developed by Multimedia Laboratory, CUHK.

Prerequisites

Install

  • Please refer to INSTALL.md for installation and dataset preparation.
  • Download pretrained models and extract to work_dirs. The folder structure should look like this:
work_dirs
├── mask_rcnn_r50_fpn_1x_dct_24_wofreeze
│   ├── 20191029_145538.log
│   └── latest.pth
└── mask_rcnn_r50_fpn_1x_dct_64_wofreeze
    ├── 20191029_151515.log
    └── latest.pth

Evaluation for instance segmentation

Run test.py to start testing

Testing the proposed DCT-24 model for instance segmentation

python tools/test.py configs/mask_rcnn_r50_rpn_1x_DCT_static_24_wofreeze.py work_dirs/mask_rcnn_r50_fpn_1x_dct_24_wofreeze/latest.pth --out results.pkl --eval bbox segm

Testing the proposed DCT-64 model for instance segmentation

python tools/test.py configs/mask_rcnn_r50_rpn_1x_DCT_static_64_wofreeze.py work_dirs/mask_rcnn_r50_fpn_1x_dct_64_wofreeze/latest.pth --out results.pkl --eval bbox segm

Results for instance segmentation

Performance of the proposed model - ResNet-50-FPN

Backbone #Channels Size Per Channel bbox
AP AP@0.5 AP@0.75 APS APM APL
ResNet-50-FPN (RGB) 3 800x1333 37.3 59.0 40.2 21.9 40.9 48.1
DCT-24 (ours) 24 200x334 37.7 59.2 40.9 21.7 41.4 49.1
DCT-64 (ours) 64 200x334 38.1 59.6 41.1 22.5 41.6 49.7
Backbone #Channels Size Per Channel mask
AP AP@0.5 AP@0.75 APS APM APL
ResNet-50-FPN (RGB) 3 800x1333 34.2 55.9 36.2 15.8 36.9 50.1
DCT-24 (ours) 24 200x334 34.6 56.1 36.9 16.1 37.4 50.7
DCT-64 (ours) 64 200x334 35.0 56.5 37.4 16.9 37.6 51.6

Instance segmentation examples generated by the DCT-24 model.

example

Evaluation for object detection

Run test.py to start testing

Testing the proposed DCT-24 model for object detection

python tools/test.py configs/faster_rcnn_r50_fpn_1x_static_24_wofreeze.py work_dirs/faster_rcnn_r50_fpn_1x_dct_24_wofreeze/latest.pth --out results.pkl --eval bbox segm

Testing the proposed DCT-64 model for object detection

python tools/test.py configs/faster_rcnn_r50_fpn_1x_static_64_wofreeze.py work_dirs/faster_rcnn_r50_fpn_1x_dct_64_wofreeze/latest.pth --out results.pkl --eval bbox segm

Results for object detection

Performance of the proposed model - ResNet-50-FPN

Backbone #Channels Size Per Channel bbox
AP AP@0.5 AP@0.75 APS APM APL
ResNet-50-FPN (RGB) 3 800x1333 36.4 58.4 39.1 21.5 40.0 46.6
DCT-24 (ours) 24 200x334 37.2 58.8 39.9 21.9 40.7 48.9
DCT-64 (ours) 64 200x334 37.2 58.5 40.6 21.9 40.9 48.3