-
Notifications
You must be signed in to change notification settings - Fork 25
/
Copy pathmodel.py
439 lines (363 loc) · 18.1 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
# -*- coding: utf-8 -*-
from __future__ import absolute_import
import os
import threading
import random
import tensorflow as tf
import torch
import torchvision as tv
import numpy as np
import skeleton
from architectures.resnet import ResNet18
from skeleton.projects import LogicModel, get_logger
from skeleton.projects.others import NBAC, AUC
torch.backends.cudnn.benchmark = True
threads = [
threading.Thread(target=lambda: torch.cuda.synchronize()),
threading.Thread(target=lambda: tf.Session())
]
[t.start() for t in threads]
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
LOGGER = get_logger(__name__)
def set_random_seed_all(seed, deterministic=False):
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
tf.random.set_random_seed(seed)
if deterministic:
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
class Model(LogicModel):
def __init__(self, metadata):
# set_random_seed_all(0xC0FFEE)
super(Model, self).__init__(metadata)
self.use_test_time_augmentation = False
self.update_transforms = False
def build(self):
base_dir = os.path.dirname(os.path.abspath(__file__))
in_channels = self.info['dataset']['shape'][-1]
num_class = self.info['dataset']['num_class']
# torch.cuda.synchronize()
LOGGER.info('[init] session')
[t.join() for t in threads]
self.device = torch.device('cuda', 0)
self.session = tf.Session()
LOGGER.info('[init] Model')
Network = ResNet18 # ResNet18 # BasicNet, SENet18, ResNet18
self.model = Network(in_channels, num_class)
self.model_pred = Network(in_channels, num_class).eval()
# torch.cuda.synchronize()
LOGGER.info('[init] weight initialize')
if Network in [ResNet18]:
model_path = os.path.join(base_dir, 'models')
LOGGER.info('model path: %s', model_path)
self.model.init(model_dir=model_path, gain=1.0)
else:
self.model.init(gain=1.0)
# torch.cuda.synchronize()
LOGGER.info('[init] copy to device')
self.model = self.model.to(device=self.device, non_blocking=True) #.half()
self.model_pred = self.model_pred.to(device=self.device, non_blocking=True) #.half()
self.is_half = self.model._half
# torch.cuda.synchronize()
LOGGER.info('[init] done.')
def update_model(self):
num_class = self.info['dataset']['num_class']
epsilon = min(0.1, max(0.001, 0.001 * pow(num_class / 10, 2)))
if self.is_multiclass():
self.model.loss_fn = torch.nn.BCEWithLogitsLoss(reduction='none')
# self.model.loss_fn = skeleton.nn.BinaryCrossEntropyLabelSmooth(num_class, epsilon=epsilon, reduction='none')
self.tau = 8.0
LOGGER.info('[update_model] %s (tau:%f, epsilon:%f)', self.model.loss_fn.__class__.__name__, self.tau, epsilon)
else:
self.model.loss_fn = torch.nn.CrossEntropyLoss(reduction='none')
# self.model.loss_fn = skeleton.nn.CrossEntropyLabelSmooth(num_class, epsilon=epsilon)
self.tau = 8.0
LOGGER.info('[update_model] %s (tau:%f, epsilon:%f)', self.model.loss_fn.__class__.__name__, self.tau, epsilon)
self.model_pred.loss_fn = self.model.loss_fn
if self.is_video():
# not use fast auto aug
self.hyper_params['conditions']['use_fast_auto_aug'] = False
times = self.hyper_params['dataset']['input'][0]
self.model.set_video(times=times)
self.model_pred.set_video(times=times)
self.init_opt()
LOGGER.info('[update] done.')
def init_opt(self):
steps_per_epoch = self.hyper_params['dataset']['steps_per_epoch']
batch_size = self.hyper_params['dataset']['batch_size']
params = [p for p in self.model.parameters() if p.requires_grad]
params_fc = [p for n, p in self.model.named_parameters() if p.requires_grad and 'fc' == n[:2] or 'conv1d' == n[:6]]
init_lr = self.hyper_params['optimizer']['lr']
warmup_multiplier = 2.0
lr_multiplier = max(0.5, batch_size / 32)
scheduler_lr = skeleton.optim.get_change_scale(
skeleton.optim.gradual_warm_up(
skeleton.optim.get_reduce_on_plateau_scheduler(
init_lr * lr_multiplier / warmup_multiplier,
patience=10, factor=.5, metric_name='train_loss'
),
warm_up_epoch=5,
multiplier=warmup_multiplier
),
init_scale=1.0
)
self.optimizer_fc = skeleton.optim.ScheduledOptimizer(
params_fc,
torch.optim.SGD,
# skeleton.optim.SGDW,
steps_per_epoch=steps_per_epoch,
clip_grad_max_norm=None,
lr=scheduler_lr,
momentum=0.9,
weight_decay=0.00025,
nesterov=True
)
self.optimizer = skeleton.optim.ScheduledOptimizer(
params,
torch.optim.SGD,
# skeleton.optim.SGDW,
steps_per_epoch=steps_per_epoch,
clip_grad_max_norm=None,
lr=scheduler_lr,
momentum=0.9,
weight_decay=0.00025,
nesterov=True
)
LOGGER.info('[optimizer] %s (batch_size:%d)', self.optimizer._optimizer.__class__.__name__, batch_size)
def adapt(self, remaining_time_budget=None):
epoch = self.info['loop']['epoch']
input_shape = self.hyper_params['dataset']['input']
height, width = input_shape[:2]
batch_size = self.hyper_params['dataset']['batch_size']
train_score = np.average([c['train']['score'] for c in self.checkpoints[-5:]])
valid_score = np.average([c['valid']['score'] for c in self.checkpoints[-5:]])
LOGGER.info('[adapt] [%04d/%04d] train:%.3f valid:%.3f',
epoch, self.hyper_params['dataset']['max_epoch'],
train_score, valid_score)
self.use_test_time_augmentation = self.info['loop']['test'] > 1
if self.hyper_params['conditions']['use_fast_auto_aug']:
self.hyper_params['conditions']['use_fast_auto_aug'] = valid_score < 0.995
# Adapt Apply Fast auto aug
if self.hyper_params['conditions']['use_fast_auto_aug'] and \
(train_score > 0.995 or self.info['terminate']) and \
remaining_time_budget > 120 and \
valid_score > 0.01 and \
self.dataloaders['valid'] is not None and \
not self.update_transforms:
LOGGER.info('[adapt] search fast auto aug policy')
self.update_transforms = True
self.info['terminate'] = True
original_valid_policy = self.dataloaders['valid'].dataset.transform.transforms
policy = skeleton.data.augmentations.autoaug_policy()
num_policy_search = 100
num_sub_policy = 3
num_select_policy = 5
searched_policy = []
for policy_search in range(num_policy_search):
selected_idx = np.random.choice(list(range(len(policy))), num_sub_policy)
selected_policy = [policy[i] for i in selected_idx]
self.dataloaders['valid'].dataset.transform.transforms = original_valid_policy + [
lambda t: t.cpu().float() if isinstance(t, torch.Tensor) else torch.Tensor(t),
tv.transforms.ToPILImage(),
skeleton.data.augmentations.Augmentation(
selected_policy
),
tv.transforms.ToTensor(),
lambda t: t.to(device=self.device) #.half()
]
metrics = []
for policy_eval in range(num_sub_policy * 2):
valid_dataloader = self.build_or_get_dataloader('valid', self.datasets['valid'], self.datasets['num_valids'])
# original_valid_batch_size = valid_dataloader.batch_sampler.batch_size
# valid_dataloader.batch_sampler.batch_size = batch_size
valid_metrics = self.epoch_valid(self.info['loop']['epoch'], valid_dataloader, reduction='max')
# valid_dataloader.batch_sampler.batch_size = original_valid_batch_size
metrics.append(valid_metrics)
loss = np.max([m['loss'] for m in metrics])
score = np.max([m['score'] for m in metrics])
LOGGER.info('[adapt] [FAA] [%02d/%02d] score: %f, loss: %f, selected_policy: %s',
policy_search, num_policy_search, score, loss, selected_policy)
searched_policy.append({
'loss': loss,
'score': score,
'policy': selected_policy
})
flatten = lambda l: [item for sublist in l for item in sublist]
# filtered valid score
searched_policy = [p for p in searched_policy if p['score'] > valid_score]
if len(searched_policy) > 0:
policy_sorted_index = np.argsort([p['score'] for p in searched_policy])[::-1][:num_select_policy]
# policy_sorted_index = np.argsort([p['loss'] for p in searched_policy])[:num_select_policy]
policy = flatten([searched_policy[idx]['policy'] for idx in policy_sorted_index])
policy = skeleton.data.augmentations.remove_duplicates(policy)
LOGGER.info('[adapt] [FAA] scores: %s', [searched_policy[idx]['score'] for idx in policy_sorted_index])
original_train_policy = self.dataloaders['train'].dataset.transform.transforms
self.dataloaders['train'].dataset.transform.transforms = original_train_policy + [
lambda t: t.cpu().float() if isinstance(t, torch.Tensor) else torch.Tensor(t),
tv.transforms.ToPILImage(),
skeleton.data.augmentations.Augmentation(
policy
),
tv.transforms.ToTensor(),
lambda t: t.to(device=self.device) #.half()
]
self.dataloaders['valid'].dataset.transform.transforms = original_valid_policy
# reset optimizer pararms
# self.model.init()
self.hyper_params['optimizer']['lr'] /= 2.0
self.init_opt()
self.hyper_params['conditions']['max_inner_loop_ratio'] *= 3
self.hyper_params['conditions']['threshold_valid_score_diff'] = 0.00001
self.hyper_params['conditions']['min_lr'] = 1e-8
def activation(self, logits):
if self.is_multiclass():
logits = torch.sigmoid(logits)
prediction = (logits > 0.5).to(logits.dtype)
else:
logits = torch.softmax(logits, dim=-1)
_, k = logits.max(-1)
prediction = torch.zeros(logits.shape, dtype=logits.dtype, device=logits.device).scatter_(-1, k.view(-1, 1), 1.0)
return logits, prediction
def epoch_train(self, epoch, train, model=None, optimizer=None):
model = model if model is not None else self.model
if epoch < 0:
optimizer = optimizer if optimizer is not None else self.optimizer_fc
else:
optimizer = optimizer if optimizer is not None else self.optimizer
#optimizer = optimizer if optimizer is not None else self.optimizer
# batch_size = self.hyper_params['dataset']['batch_size']
model.train()
model.zero_grad()
num_steps = len(train)
metrics = []
for step, (examples, labels) in enumerate(train):
if examples.shape[0] == 1:
examples = examples[0]
labels = labels[0]
original_labels = labels
if not self.is_multiclass():
labels = labels.argmax(dim=-1)
skeleton.nn.MoveToHook.to((examples, labels), self.device, self.is_half)
logits, loss = model(examples, labels, tau=self.tau, reduction='avg')
loss = loss.sum()
loss.backward()
max_epoch = self.hyper_params['dataset']['max_epoch']
optimizer.update(maximum_epoch=max_epoch)
optimizer.step()
model.zero_grad()
logits, prediction = self.activation(logits.float())
tpr, tnr, nbac = NBAC(prediction, original_labels.float())
auc = AUC(logits, original_labels.float())
score = auc if self.hyper_params['conditions']['score_type'] == 'auc' else float(nbac.detach().float())
metrics.append({
'loss': loss.detach().float().cpu(),
'score': score,
})
LOGGER.debug(
'[train] [%02d] [%03d/%03d] loss:%.6f AUC:%.3f NBAC:%.3f tpr:%.3f tnr:%.3f, lr:%.8f',
epoch, step, num_steps, loss, auc, nbac, tpr, tnr,
optimizer.get_learning_rate()
)
train_loss = np.average([m['loss'] for m in metrics])
train_score = np.average([m['score'] for m in metrics])
optimizer.update(train_loss=train_loss)
return {
'loss': train_loss,
'score': train_score,
}
def epoch_valid(self, epoch, valid, reduction='avg'):
test_time_augmentation = False
self.model.eval()
num_steps = len(valid)
metrics = []
tau = self.tau
with torch.no_grad():
for step, (examples, labels) in enumerate(valid):
original_labels = labels
if not self.is_multiclass():
labels = labels.argmax(dim=-1)
batch_size = examples.size(0)
# Test-Time Augment flip
if self.use_test_time_augmentation and test_time_augmentation:
examples = torch.cat([examples, torch.flip(examples, dims=[-1])], dim=0)
labels = torch.cat([labels, labels], dim=0)
# skeleton.nn.MoveToHook.to((examples, labels), self.device, self.is_half)
logits, loss = self.model(examples, labels, tau=tau, reduction=reduction)
# avergae
if self.use_test_time_augmentation and test_time_augmentation:
logits1, logits2 = torch.split(logits, batch_size, dim=0)
logits = (logits1 + logits2) / 2.0
logits, prediction = self.activation(logits.float())
tpr, tnr, nbac = NBAC(prediction, original_labels.float())
if reduction == 'avg':
auc = AUC(logits, original_labels.float())
else:
auc = max([AUC(logits[i:i+16], original_labels[i:i+16].float()) for i in range(int(len(logits)) // 16)])
score = auc if self.hyper_params['conditions']['score_type'] == 'auc' else float(nbac.detach().float())
metrics.append({
'loss': loss.detach().float().cpu(),
'score': score,
})
LOGGER.debug(
'[valid] [%02d] [%03d/%03d] loss:%.6f AUC:%.3f NBAC:%.3f tpr:%.3f tnr:%.3f, lr:%.8f',
epoch, step, num_steps, loss, auc, nbac, tpr, tnr,
self.optimizer.get_learning_rate()
)
if reduction == 'avg':
valid_loss = np.average([m['loss'] for m in metrics])
valid_score = np.average([m['score'] for m in metrics])
elif reduction in ['min', 'max']:
valid_loss = np.min([m['loss'] for m in metrics])
valid_score = np.max([m['score'] for m in metrics])
else:
raise Exception('not support reduction method: %s' % reduction)
self.optimizer.update(valid_loss=np.average(valid_loss))
return {
'loss': valid_loss,
'score': valid_score,
}
def skip_valid(self, epoch):
LOGGER.debug('[valid] skip')
return {
'loss': 99.9,
'score': epoch * 1e-4,
}
def prediction(self, dataloader, model=None, test_time_augmentation=True, detach=True, num_step=None):
tau = self.tau
if model is None:
model = self.model_pred
best_idx = np.argmax(np.array([c['valid']['score'] for c in self.checkpoints]))
best_loss = self.checkpoints[best_idx]['valid']['loss']
best_score = self.checkpoints[best_idx]['valid']['score']
states = self.checkpoints[best_idx]['model']
model.load_state_dict(states)
LOGGER.info('best checkpoints at %d/%d (valid loss:%f score:%f) tau:%f',
best_idx + 1, len(self.checkpoints), best_loss, best_score, tau)
num_step = len(dataloader) if num_step is None else num_step
model.eval()
with torch.no_grad():
predictions = []
for step, (examples, labels) in zip(range(num_step), dataloader):
batch_size = examples.size(0)
# Test-Time Augment flip
if self.use_test_time_augmentation and test_time_augmentation:
examples = torch.cat([examples, torch.flip(examples, dims=[-1])], dim=0)
# skeleton.nn.MoveToHook.to((examples, labels), self.device, self.is_half)
logits = model(examples, tau=tau)
# avergae
if self.use_test_time_augmentation and test_time_augmentation:
logits1, logits2 = torch.split(logits, batch_size, dim=0)
logits = (logits1 + logits2) / 2.0
logits, prediction = self.activation(logits)
if detach:
predictions.append(logits.detach().float().cpu().numpy())
else:
predictions.append(logits)
if detach:
predictions = np.concatenate(predictions, axis=0).astype(np.float)
else:
predictions = torch.cat(predictions, dim=0)
return predictions