forked from nesl/adversarial_genattack
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_models.py
82 lines (61 loc) · 2.38 KB
/
train_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
## train_models.py -- train the neural network models for attacking
##
## Copyright (C) 2016, Nicholas Carlini <nicholas@carlini.com>.
##
## This program is licenced under the BSD 2-Clause licence,
## contained in the LICENCE file in this directory.
## Modified by Moustafa Alzantot (malzantot@ucla.edu)
import numpy as np
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation, Flatten
from keras.layers import Conv2D, MaxPooling2D
from keras.optimizers import SGD
import tensorflow as tf
from setup_mnist import MNIST
from setup_cifar import CIFAR
import os
def train(data, file_name, params, num_epochs=50, batch_size=128, train_temp=1, init=None):
"""
Standard neural network training procedure.
"""
model = Sequential()
print(data.train_data.shape)
model.add(Conv2D(params[0], (3, 3),
input_shape=data.train_data.shape[1:]))
model.add(Activation('relu'))
model.add(Conv2D(params[1], (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(params[2], (3, 3)))
model.add(Activation('relu'))
model.add(Conv2D(params[3], (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Flatten())
model.add(Dense(params[4]))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(params[5]))
model.add(Activation('relu'))
model.add(Dense(10))
if init != None:
model.load_weights(init)
def fn(correct, predicted):
return tf.nn.softmax_cross_entropy_with_logits(labels=correct,
logits=predicted/train_temp)
sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(loss=fn,
optimizer=sgd,
metrics=['accuracy'])
model.fit(data.train_data, data.train_labels,
batch_size=batch_size,
validation_data=(data.validation_data, data.validation_labels),
nb_epoch=num_epochs,
shuffle=True)
if file_name != None:
model.save(file_name)
return model
if not os.path.isdir('models'):
os.makedirs('models')
train(CIFAR(), "models/cifar", [64, 64, 128, 128, 256, 256], num_epochs=50)
train(MNIST(), "models/mnist", [32, 32, 64, 64, 200, 200], num_epochs=50)