-
Notifications
You must be signed in to change notification settings - Fork 45
/
create_finetuning_data.py
149 lines (121 loc) · 5.28 KB
/
create_finetuning_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""BERT finetuning task dataset generator."""
from __future__ import absolute_import, division, print_function
import json
import tensorflow as tf
from absl import app, flags, logging
import classifier_data_lib
import squad_lib
FLAGS = flags.FLAGS
flags.DEFINE_enum(
"fine_tuning_task_type", "classification", ["classification", "squad"],
"The name of the ALBERT fine tuning task for which data "
"will be generated..")
# BERT classification specific flags.
flags.DEFINE_string(
"input_data_dir", None,
"The input data dir. Should contain the .tsv files (or other data files) "
"for the task.")
flags.DEFINE_enum("classification_task_name", "MNLI",
["COLA", "STS", "SST", "MNLI", "QNLI",
"QQP", "RTE", "MRPC", "WNLI", "XNLI", ],
"The name of the task to train ALBERT classifier.")
# ALBERT Squad task specific flags.
flags.DEFINE_string(
"squad_data_file", None,
"The input data file in for generating training data for ALBERT squad task.")
flags.DEFINE_integer(
"doc_stride", 128,
"When splitting up a long document into chunks, how much stride to "
"take between chunks.")
flags.DEFINE_integer(
"max_query_length", 64,
"The maximum number of tokens for the question. Questions longer than "
"this will be truncated to this length.")
flags.DEFINE_bool(
"version_2_with_negative", False,
"If true, the SQuAD examples contain some that do not have an answer.")
# Shared flags across BERT fine-tuning tasks.
flags.DEFINE_string("spm_model_file", None,
"The vocabulary file that the BERT model was trained on.")
flags.DEFINE_string(
"train_data_output_path", None,
"The path in which generated training input data will be written as tf"
" records."
)
flags.DEFINE_string(
"eval_data_output_path", None,
"The path in which generated training input data will be written as tf"
" records."
)
flags.DEFINE_string("meta_data_file_path", None,
"The path in which input meta data will be written.")
flags.DEFINE_bool(
"do_lower_case", True,
"Whether to lower case the input text. Should be True for uncased "
"models and False for cased models.")
flags.DEFINE_integer(
"max_seq_length", 128,
"The maximum total input sequence length after WordPiece tokenization. "
"Sequences longer than this will be truncated, and sequences shorter "
"than this will be padded.")
def generate_classifier_dataset():
"""Generates classifier dataset and returns input meta data."""
assert FLAGS.input_data_dir and FLAGS.classification_task_name
processors = {
"cola": classifier_data_lib.ColaProcessor,
"sts": classifier_data_lib.StsbProcessor,
"sst": classifier_data_lib.Sst2Processor,
"mnli": classifier_data_lib.MnliProcessor,
"qnli": classifier_data_lib.QnliProcessor,
"qqp": classifier_data_lib.QqpProcessor,
"rte": classifier_data_lib.RteProcessor,
"mrpc": classifier_data_lib.MrpcProcessor,
"wnli": classifier_data_lib.WnliProcessor,
"xnli": classifier_data_lib.XnliProcessor,
}
task_name = FLAGS.classification_task_name.lower()
if task_name not in processors:
raise ValueError("Task not found: %s" % (task_name))
processor = processors[task_name]()
return classifier_data_lib.generate_tf_record_from_data_file(
processor,
FLAGS.input_data_dir,
FLAGS.spm_model_file,
train_data_output_path=FLAGS.train_data_output_path,
eval_data_output_path=FLAGS.eval_data_output_path,
max_seq_length=FLAGS.max_seq_length,
do_lower_case=FLAGS.do_lower_case)
def generate_squad_dataset():
"""Generates squad training dataset and returns input meta data."""
assert FLAGS.squad_data_file
return squad_lib.generate_tf_record_from_json_file(
FLAGS.squad_data_file, FLAGS.spm_model_file, FLAGS.train_data_output_path,
FLAGS.max_seq_length, FLAGS.do_lower_case, FLAGS.max_query_length,
FLAGS.doc_stride, FLAGS.version_2_with_negative)
def main(_):
logging.set_verbosity(logging.INFO)
if FLAGS.fine_tuning_task_type == "classification":
input_meta_data = generate_classifier_dataset()
else:
input_meta_data = generate_squad_dataset()
with tf.io.gfile.GFile(FLAGS.meta_data_file_path, "w") as writer:
writer.write(json.dumps(input_meta_data, indent=4) + "\n")
if __name__ == "__main__":
flags.mark_flag_as_required("spm_model_file")
flags.mark_flag_as_required("train_data_output_path")
flags.mark_flag_as_required("meta_data_file_path")
app.run(main)