-
Notifications
You must be signed in to change notification settings - Fork 101
/
maf.py
747 lines (602 loc) · 31.2 KB
/
maf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
"""
Masked Autoregressive Flow for Density Estimation
arXiv:1705.07057v4
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.distributions as D
import torchvision.transforms as T
from torchvision.utils import save_image
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import os
import math
import argparse
import pprint
import copy
from data import fetch_dataloaders
parser = argparse.ArgumentParser()
# action
parser.add_argument('--train', action='store_true', help='Train a flow.')
parser.add_argument('--evaluate', action='store_true', help='Evaluate a flow.')
parser.add_argument('--restore_file', type=str, help='Path to model to restore.')
parser.add_argument('--generate', action='store_true', help='Generate samples from a model.')
parser.add_argument('--data_dir', default='./data/', help='Location of datasets.')
parser.add_argument('--output_dir', default='./results/{}'.format(os.path.splitext(__file__)[0]))
parser.add_argument('--results_file', default='results.txt', help='Filename where to store settings and test results.')
parser.add_argument('--no_cuda', action='store_true', help='Do not use cuda.')
# data
parser.add_argument('--dataset', default='toy', help='Which dataset to use.')
parser.add_argument('--flip_toy_var_order', action='store_true', help='Whether to flip the toy dataset variable order to (x2, x1).')
parser.add_argument('--seed', type=int, default=1, help='Random seed to use.')
# model
parser.add_argument('--model', default='maf', help='Which model to use: made, maf.')
# made parameters
parser.add_argument('--n_blocks', type=int, default=5, help='Number of blocks to stack in a model (MADE in MAF; Coupling+BN in RealNVP).')
parser.add_argument('--n_components', type=int, default=1, help='Number of Gaussian clusters for mixture of gaussians models.')
parser.add_argument('--hidden_size', type=int, default=100, help='Hidden layer size for MADE (and each MADE block in an MAF).')
parser.add_argument('--n_hidden', type=int, default=1, help='Number of hidden layers in each MADE.')
parser.add_argument('--activation_fn', type=str, default='relu', help='What activation function to use in the MADEs.')
parser.add_argument('--input_order', type=str, default='sequential', help='What input order to use (sequential | random).')
parser.add_argument('--conditional', default=False, action='store_true', help='Whether to use a conditional model.')
parser.add_argument('--no_batch_norm', action='store_true')
# training params
parser.add_argument('--batch_size', type=int, default=100)
parser.add_argument('--n_epochs', type=int, default=50)
parser.add_argument('--start_epoch', default=0, help='Starting epoch (for logging; to be overwritten when restoring file.')
parser.add_argument('--lr', type=float, default=1e-4, help='Learning rate.')
parser.add_argument('--log_interval', type=int, default=1000, help='How often to show loss statistics and save samples.')
# --------------------
# Model layers and helpers
# --------------------
def create_masks(input_size, hidden_size, n_hidden, input_order='sequential', input_degrees=None):
# MADE paper sec 4:
# degrees of connections between layers -- ensure at most in_degree - 1 connections
degrees = []
# set input degrees to what is provided in args (the flipped order of the previous layer in a stack of mades);
# else init input degrees based on strategy in input_order (sequential or random)
if input_order == 'sequential':
degrees += [torch.arange(input_size)] if input_degrees is None else [input_degrees]
for _ in range(n_hidden + 1):
degrees += [torch.arange(hidden_size) % (input_size - 1)]
degrees += [torch.arange(input_size) % input_size - 1] if input_degrees is None else [input_degrees % input_size - 1]
elif input_order == 'random':
degrees += [torch.randperm(input_size)] if input_degrees is None else [input_degrees]
for _ in range(n_hidden + 1):
min_prev_degree = min(degrees[-1].min().item(), input_size - 1)
degrees += [torch.randint(min_prev_degree, input_size, (hidden_size,))]
min_prev_degree = min(degrees[-1].min().item(), input_size - 1)
degrees += [torch.randint(min_prev_degree, input_size, (input_size,)) - 1] if input_degrees is None else [input_degrees - 1]
# construct masks
masks = []
for (d0, d1) in zip(degrees[:-1], degrees[1:]):
masks += [(d1.unsqueeze(-1) >= d0.unsqueeze(0)).float()]
return masks, degrees[0]
class MaskedLinear(nn.Linear):
""" MADE building block layer """
def __init__(self, input_size, n_outputs, mask, cond_label_size=None):
super().__init__(input_size, n_outputs)
self.register_buffer('mask', mask)
self.cond_label_size = cond_label_size
if cond_label_size is not None:
self.cond_weight = nn.Parameter(torch.rand(n_outputs, cond_label_size) / math.sqrt(cond_label_size))
def forward(self, x, y=None):
out = F.linear(x, self.weight * self.mask, self.bias)
if y is not None:
out = out + F.linear(y, self.cond_weight)
return out
def extra_repr(self):
return 'in_features={}, out_features={}, bias={}'.format(
self.in_features, self.out_features, self.bias is not None
) + (self.cond_label_size != None) * ', cond_features={}'.format(self.cond_label_size)
class LinearMaskedCoupling(nn.Module):
""" Modified RealNVP Coupling Layers per the MAF paper """
def __init__(self, input_size, hidden_size, n_hidden, mask, cond_label_size=None):
super().__init__()
self.register_buffer('mask', mask)
# scale function
s_net = [nn.Linear(input_size + (cond_label_size if cond_label_size is not None else 0), hidden_size)]
for _ in range(n_hidden):
s_net += [nn.Tanh(), nn.Linear(hidden_size, hidden_size)]
s_net += [nn.Tanh(), nn.Linear(hidden_size, input_size)]
self.s_net = nn.Sequential(*s_net)
# translation function
self.t_net = copy.deepcopy(self.s_net)
# replace Tanh with ReLU's per MAF paper
for i in range(len(self.t_net)):
if not isinstance(self.t_net[i], nn.Linear): self.t_net[i] = nn.ReLU()
def forward(self, x, y=None):
# apply mask
mx = x * self.mask
# run through model
s = self.s_net(mx if y is None else torch.cat([y, mx], dim=1))
t = self.t_net(mx if y is None else torch.cat([y, mx], dim=1))
u = mx + (1 - self.mask) * (x - t) * torch.exp(-s) # cf RealNVP eq 8 where u corresponds to x (here we're modeling u)
log_abs_det_jacobian = - (1 - self.mask) * s # log det du/dx; cf RealNVP 8 and 6; note, sum over input_size done at model log_prob
return u, log_abs_det_jacobian
def inverse(self, u, y=None):
# apply mask
mu = u * self.mask
# run through model
s = self.s_net(mu if y is None else torch.cat([y, mu], dim=1))
t = self.t_net(mu if y is None else torch.cat([y, mu], dim=1))
x = mu + (1 - self.mask) * (u * s.exp() + t) # cf RealNVP eq 7
log_abs_det_jacobian = (1 - self.mask) * s # log det dx/du
return x, log_abs_det_jacobian
class BatchNorm(nn.Module):
""" RealNVP BatchNorm layer """
def __init__(self, input_size, momentum=0.9, eps=1e-5):
super().__init__()
self.momentum = momentum
self.eps = eps
self.log_gamma = nn.Parameter(torch.zeros(input_size))
self.beta = nn.Parameter(torch.zeros(input_size))
self.register_buffer('running_mean', torch.zeros(input_size))
self.register_buffer('running_var', torch.ones(input_size))
def forward(self, x, cond_y=None):
if self.training:
self.batch_mean = x.mean(0)
self.batch_var = x.var(0) # note MAF paper uses biased variance estimate; ie x.var(0, unbiased=False)
# update running mean
self.running_mean.mul_(self.momentum).add_(self.batch_mean.data * (1 - self.momentum))
self.running_var.mul_(self.momentum).add_(self.batch_var.data * (1 - self.momentum))
mean = self.batch_mean
var = self.batch_var
else:
mean = self.running_mean
var = self.running_var
# compute normalized input (cf original batch norm paper algo 1)
x_hat = (x - mean) / torch.sqrt(var + self.eps)
y = self.log_gamma.exp() * x_hat + self.beta
# compute log_abs_det_jacobian (cf RealNVP paper)
log_abs_det_jacobian = self.log_gamma - 0.5 * torch.log(var + self.eps)
# print('in sum log var {:6.3f} ; out sum log var {:6.3f}; sum log det {:8.3f}; mean log_gamma {:5.3f}; mean beta {:5.3f}'.format(
# (var + self.eps).log().sum().data.numpy(), y.var(0).log().sum().data.numpy(), log_abs_det_jacobian.mean(0).item(), self.log_gamma.mean(), self.beta.mean()))
return y, log_abs_det_jacobian.expand_as(x)
def inverse(self, y, cond_y=None):
if self.training:
mean = self.batch_mean
var = self.batch_var
else:
mean = self.running_mean
var = self.running_var
x_hat = (y - self.beta) * torch.exp(-self.log_gamma)
x = x_hat * torch.sqrt(var + self.eps) + mean
log_abs_det_jacobian = 0.5 * torch.log(var + self.eps) - self.log_gamma
return x, log_abs_det_jacobian.expand_as(x)
class FlowSequential(nn.Sequential):
""" Container for layers of a normalizing flow """
def forward(self, x, y):
sum_log_abs_det_jacobians = 0
for module in self:
x, log_abs_det_jacobian = module(x, y)
sum_log_abs_det_jacobians = sum_log_abs_det_jacobians + log_abs_det_jacobian
return x, sum_log_abs_det_jacobians
def inverse(self, u, y):
sum_log_abs_det_jacobians = 0
for module in reversed(self):
u, log_abs_det_jacobian = module.inverse(u, y)
sum_log_abs_det_jacobians = sum_log_abs_det_jacobians + log_abs_det_jacobian
return u, sum_log_abs_det_jacobians
# --------------------
# Models
# --------------------
class MADE(nn.Module):
def __init__(self, input_size, hidden_size, n_hidden, cond_label_size=None, activation='relu', input_order='sequential', input_degrees=None):
"""
Args:
input_size -- scalar; dim of inputs
hidden_size -- scalar; dim of hidden layers
n_hidden -- scalar; number of hidden layers
activation -- str; activation function to use
input_order -- str or tensor; variable order for creating the autoregressive masks (sequential|random)
or the order flipped from the previous layer in a stack of mades
conditional -- bool; whether model is conditional
"""
super().__init__()
# base distribution for calculation of log prob under the model
self.register_buffer('base_dist_mean', torch.zeros(input_size))
self.register_buffer('base_dist_var', torch.ones(input_size))
# create masks
masks, self.input_degrees = create_masks(input_size, hidden_size, n_hidden, input_order, input_degrees)
# setup activation
if activation == 'relu':
activation_fn = nn.ReLU()
elif activation == 'tanh':
activation_fn = nn.Tanh()
else:
raise ValueError('Check activation function.')
# construct model
self.net_input = MaskedLinear(input_size, hidden_size, masks[0], cond_label_size)
self.net = []
for m in masks[1:-1]:
self.net += [activation_fn, MaskedLinear(hidden_size, hidden_size, m)]
self.net += [activation_fn, MaskedLinear(hidden_size, 2 * input_size, masks[-1].repeat(2,1))]
self.net = nn.Sequential(*self.net)
@property
def base_dist(self):
return D.Normal(self.base_dist_mean, self.base_dist_var)
def forward(self, x, y=None):
# MAF eq 4 -- return mean and log std
m, loga = self.net(self.net_input(x, y)).chunk(chunks=2, dim=1)
u = (x - m) * torch.exp(-loga)
# MAF eq 5
log_abs_det_jacobian = - loga
return u, log_abs_det_jacobian
def inverse(self, u, y=None, sum_log_abs_det_jacobians=None):
# MAF eq 3
D = u.shape[1]
x = torch.zeros_like(u)
# run through reverse model
for i in self.input_degrees:
m, loga = self.net(self.net_input(x, y)).chunk(chunks=2, dim=1)
x[:,i] = u[:,i] * torch.exp(loga[:,i]) + m[:,i]
log_abs_det_jacobian = loga
return x, log_abs_det_jacobian
def log_prob(self, x, y=None):
u, log_abs_det_jacobian = self.forward(x, y)
return torch.sum(self.base_dist.log_prob(u) + log_abs_det_jacobian, dim=1)
class MADEMOG(nn.Module):
""" Mixture of Gaussians MADE """
def __init__(self, n_components, input_size, hidden_size, n_hidden, cond_label_size=None, activation='relu', input_order='sequential', input_degrees=None):
"""
Args:
n_components -- scalar; number of gauassian components in the mixture
input_size -- scalar; dim of inputs
hidden_size -- scalar; dim of hidden layers
n_hidden -- scalar; number of hidden layers
activation -- str; activation function to use
input_order -- str or tensor; variable order for creating the autoregressive masks (sequential|random)
or the order flipped from the previous layer in a stack of mades
conditional -- bool; whether model is conditional
"""
super().__init__()
self.n_components = n_components
# base distribution for calculation of log prob under the model
self.register_buffer('base_dist_mean', torch.zeros(input_size))
self.register_buffer('base_dist_var', torch.ones(input_size))
# create masks
masks, self.input_degrees = create_masks(input_size, hidden_size, n_hidden, input_order, input_degrees)
# setup activation
if activation == 'relu':
activation_fn = nn.ReLU()
elif activation == 'tanh':
activation_fn = nn.Tanh()
else:
raise ValueError('Check activation function.')
# construct model
self.net_input = MaskedLinear(input_size, hidden_size, masks[0], cond_label_size)
self.net = []
for m in masks[1:-1]:
self.net += [activation_fn, MaskedLinear(hidden_size, hidden_size, m)]
self.net += [activation_fn, MaskedLinear(hidden_size, n_components * 3 * input_size, masks[-1].repeat(n_components * 3,1))]
self.net = nn.Sequential(*self.net)
@property
def base_dist(self):
return D.Normal(self.base_dist_mean, self.base_dist_var)
def forward(self, x, y=None):
# shapes
N, L = x.shape
C = self.n_components
# MAF eq 2 -- parameters of Gaussians - mean, logsigma, log unnormalized cluster probabilities
m, loga, logr = self.net(self.net_input(x, y)).view(N, C, 3 * L).chunk(chunks=3, dim=-1) # out 3 x (N, C, L)
# MAF eq 4
x = x.repeat(1, C).view(N, C, L) # out (N, C, L)
u = (x - m) * torch.exp(-loga) # out (N, C, L)
# MAF eq 5
log_abs_det_jacobian = - loga # out (N, C, L)
# normalize cluster responsibilities
self.logr = logr - logr.logsumexp(1, keepdim=True) # out (N, C, L)
return u, log_abs_det_jacobian
def inverse(self, u, y=None, sum_log_abs_det_jacobians=None):
# shapes
N, C, L = u.shape
# init output
x = torch.zeros(N, L).to(u.device)
# MAF eq 3
# run through reverse model along each L
for i in self.input_degrees:
m, loga, logr = self.net(self.net_input(x, y)).view(N, C, 3 * L).chunk(chunks=3, dim=-1) # out 3 x (N, C, L)
# normalize cluster responsibilities and sample cluster assignments from a categorical dist
logr = logr - logr.logsumexp(1, keepdim=True) # out (N, C, L)
z = D.Categorical(logits=logr[:,:,i]).sample().unsqueeze(-1) # out (N, 1)
u_z = torch.gather(u[:,:,i], 1, z).squeeze() # out (N, 1)
m_z = torch.gather(m[:,:,i], 1, z).squeeze() # out (N, 1)
loga_z = torch.gather(loga[:,:,i], 1, z).squeeze()
x[:,i] = u_z * torch.exp(loga_z) + m_z
log_abs_det_jacobian = loga
return x, log_abs_det_jacobian
def log_prob(self, x, y=None):
u, log_abs_det_jacobian = self.forward(x, y) # u = (N,C,L); log_abs_det_jacobian = (N,C,L)
# marginalize cluster probs
log_probs = torch.logsumexp(self.logr + self.base_dist.log_prob(u) + log_abs_det_jacobian, dim=1) # sum over C; out (N, L)
return log_probs.sum(1) # sum over L; out (N,)
class MAF(nn.Module):
def __init__(self, n_blocks, input_size, hidden_size, n_hidden, cond_label_size=None, activation='relu', input_order='sequential', batch_norm=True):
super().__init__()
# base distribution for calculation of log prob under the model
self.register_buffer('base_dist_mean', torch.zeros(input_size))
self.register_buffer('base_dist_var', torch.ones(input_size))
# construct model
modules = []
self.input_degrees = None
for i in range(n_blocks):
modules += [MADE(input_size, hidden_size, n_hidden, cond_label_size, activation, input_order, self.input_degrees)]
self.input_degrees = modules[-1].input_degrees.flip(0)
modules += batch_norm * [BatchNorm(input_size)]
self.net = FlowSequential(*modules)
@property
def base_dist(self):
return D.Normal(self.base_dist_mean, self.base_dist_var)
def forward(self, x, y=None):
return self.net(x, y)
def inverse(self, u, y=None):
return self.net.inverse(u, y)
def log_prob(self, x, y=None):
u, sum_log_abs_det_jacobians = self.forward(x, y)
return torch.sum(self.base_dist.log_prob(u) + sum_log_abs_det_jacobians, dim=1)
class MAFMOG(nn.Module):
""" MAF on mixture of gaussian MADE """
def __init__(self, n_blocks, n_components, input_size, hidden_size, n_hidden, cond_label_size=None, activation='relu',
input_order='sequential', batch_norm=True):
super().__init__()
# base distribution for calculation of log prob under the model
self.register_buffer('base_dist_mean', torch.zeros(input_size))
self.register_buffer('base_dist_var', torch.ones(input_size))
self.maf = MAF(n_blocks, input_size, hidden_size, n_hidden, cond_label_size, activation, input_order, batch_norm)
# get reversed input order from the last layer (note in maf model, input_degrees are already flipped in for-loop model constructor
input_degrees = self.maf.input_degrees#.flip(0)
self.mademog = MADEMOG(n_components, input_size, hidden_size, n_hidden, cond_label_size, activation, input_order, input_degrees)
@property
def base_dist(self):
return D.Normal(self.base_dist_mean, self.base_dist_var)
def forward(self, x, y=None):
u, maf_log_abs_dets = self.maf(x, y)
u, made_log_abs_dets = self.mademog(u, y)
sum_log_abs_det_jacobians = maf_log_abs_dets.unsqueeze(1) + made_log_abs_dets
return u, sum_log_abs_det_jacobians
def inverse(self, u, y=None):
x, made_log_abs_dets = self.mademog.inverse(u, y)
x, maf_log_abs_dets = self.maf.inverse(x, y)
sum_log_abs_det_jacobians = maf_log_abs_dets.unsqueeze(1) + made_log_abs_dets
return x, sum_log_abs_det_jacobians
def log_prob(self, x, y=None):
u, log_abs_det_jacobian = self.forward(x, y) # u = (N,C,L); log_abs_det_jacobian = (N,C,L)
# marginalize cluster probs
log_probs = torch.logsumexp(self.mademog.logr + self.base_dist.log_prob(u) + log_abs_det_jacobian, dim=1) # out (N, L)
return log_probs.sum(1) # out (N,)
class RealNVP(nn.Module):
def __init__(self, n_blocks, input_size, hidden_size, n_hidden, cond_label_size=None, batch_norm=True):
super().__init__()
# base distribution for calculation of log prob under the model
self.register_buffer('base_dist_mean', torch.zeros(input_size))
self.register_buffer('base_dist_var', torch.ones(input_size))
# construct model
modules = []
mask = torch.arange(input_size).float() % 2
for i in range(n_blocks):
modules += [LinearMaskedCoupling(input_size, hidden_size, n_hidden, mask, cond_label_size)]
mask = 1 - mask
modules += batch_norm * [BatchNorm(input_size)]
self.net = FlowSequential(*modules)
@property
def base_dist(self):
return D.Normal(self.base_dist_mean, self.base_dist_var)
def forward(self, x, y=None):
return self.net(x, y)
def inverse(self, u, y=None):
return self.net.inverse(u, y)
def log_prob(self, x, y=None):
u, sum_log_abs_det_jacobians = self.forward(x, y)
return torch.sum(self.base_dist.log_prob(u) + sum_log_abs_det_jacobians, dim=1)
# --------------------
# Train and evaluate
# --------------------
def train(model, dataloader, optimizer, epoch, args):
for i, data in enumerate(dataloader):
model.train()
# check if labeled dataset
if len(data) == 1:
x, y = data[0], None
else:
x, y = data
y = y.to(args.device)
x = x.view(x.shape[0], -1).to(args.device)
loss = - model.log_prob(x, y if args.cond_label_size else None).mean(0)
optimizer.zero_grad()
loss.backward()
optimizer.step()
if i % args.log_interval == 0:
print('epoch {:3d} / {}, step {:4d} / {}; loss {:.4f}'.format(
epoch, args.start_epoch + args.n_epochs, i, len(dataloader), loss.item()))
@torch.no_grad()
def evaluate(model, dataloader, epoch, args):
model.eval()
# conditional model
if args.cond_label_size is not None:
logprior = torch.tensor(1 / args.cond_label_size).log().to(args.device)
loglike = [[] for _ in range(args.cond_label_size)]
for i in range(args.cond_label_size):
# make one-hot labels
labels = torch.zeros(args.batch_size, args.cond_label_size).to(args.device)
labels[:,i] = 1
for x, y in dataloader:
x = x.view(x.shape[0], -1).to(args.device)
loglike[i].append(model.log_prob(x, labels))
loglike[i] = torch.cat(loglike[i], dim=0) # cat along data dim under this label
loglike = torch.stack(loglike, dim=1) # cat all data along label dim
# log p(x) = log ∑_y p(x,y) = log ∑_y p(x|y)p(y)
# assume uniform prior = log p(y) ∑_y p(x|y) = log p(y) + log ∑_y p(x|y)
logprobs = logprior + loglike.logsumexp(dim=1)
# TODO -- measure accuracy as argmax of the loglike
# unconditional model
else:
logprobs = []
for data in dataloader:
x = data[0].view(data[0].shape[0], -1).to(args.device)
logprobs.append(model.log_prob(x))
logprobs = torch.cat(logprobs, dim=0).to(args.device)
logprob_mean, logprob_std = logprobs.mean(0), 2 * logprobs.var(0).sqrt() / math.sqrt(len(dataloader.dataset))
output = 'Evaluate ' + (epoch != None)*'(epoch {}) -- '.format(epoch) + 'logp(x) = {:.3f} +/- {:.3f}'.format(logprob_mean, logprob_std)
print(output)
print(output, file=open(args.results_file, 'a'))
return logprob_mean, logprob_std
@torch.no_grad()
def generate(model, dataset_lam, args, step=None, n_row=10):
model.eval()
# conditional model
if args.cond_label_size:
samples = []
labels = torch.eye(args.cond_label_size).to(args.device)
for i in range(args.cond_label_size):
# sample model base distribution and run through inverse model to sample data space
u = model.base_dist.sample((n_row, args.n_components)).squeeze()
labels_i = labels[i].expand(n_row, -1)
sample, _ = model.inverse(u, labels_i)
log_probs = model.log_prob(sample, labels_i).sort(0)[1].flip(0) # sort by log_prob; take argsort idxs; flip high to low
samples.append(sample[log_probs])
samples = torch.cat(samples, dim=0)
# unconditional model
else:
u = model.base_dist.sample((n_row**2, args.n_components)).squeeze()
samples, _ = model.inverse(u)
log_probs = model.log_prob(samples).sort(0)[1].flip(0) # sort by log_prob; take argsort idxs; flip high to low
samples = samples[log_probs]
# convert and save images
samples = samples.view(samples.shape[0], *args.input_dims)
samples = (torch.sigmoid(samples) - dataset_lam) / (1 - 2 * dataset_lam)
filename = 'generated_samples' + (step != None)*'_epoch_{}'.format(step) + '.png'
save_image(samples, os.path.join(args.output_dir, filename), nrow=n_row, normalize=True)
def train_and_evaluate(model, train_loader, test_loader, optimizer, args):
best_eval_logprob = float('-inf')
for i in range(args.start_epoch, args.start_epoch + args.n_epochs):
train(model, train_loader, optimizer, i, args)
eval_logprob, _ = evaluate(model, test_loader, i, args)
# save training checkpoint
torch.save({'epoch': i,
'model_state': model.state_dict(),
'optimizer_state': optimizer.state_dict()},
os.path.join(args.output_dir, 'model_checkpoint.pt'))
# save model only
torch.save(model.state_dict(), os.path.join(args.output_dir, 'model_state.pt'))
# save best state
if eval_logprob > best_eval_logprob:
best_eval_logprob = eval_logprob
torch.save({'epoch': i,
'model_state': model.state_dict(),
'optimizer_state': optimizer.state_dict()},
os.path.join(args.output_dir, 'best_model_checkpoint.pt'))
# plot sample
if args.dataset == 'TOY':
plot_sample_and_density(model, train_loader.dataset.base_dist, args, step=i)
if args.dataset == 'MNIST':
generate(model, train_loader.dataset.lam, args, step=i)
# --------------------
# Plot
# --------------------
def plot_density(dist, ax, ranges, flip_var_order=False):
(xmin, xmax), (ymin, ymax) = ranges
# sample uniform grid
n = 200
xx1 = torch.linspace(xmin, xmax, n)
xx2 = torch.linspace(ymin, ymax, n)
xx, yy = torch.meshgrid(xx1, xx2)
xy = torch.stack((xx.flatten(), yy.flatten()), dim=-1).squeeze()
if flip_var_order:
xy = xy.flip(1)
# run uniform grid through model and plot
density = dist.log_prob(xy).exp()
ax.contour(xx, yy, density.view(n,n).data.numpy())
# format
ax.set_xlim(xmin, xmax)
ax.set_ylim(ymin, ymax)
ax.set_xticks([xmin, xmax])
ax.set_yticks([ymin, ymax])
def plot_dist_sample(data, ax, ranges):
ax.scatter(data[:,0].data.numpy(), data[:,1].data.numpy(), s=10, alpha=0.4)
# format
(xmin, xmax), (ymin, ymax) = ranges
ax.set_xlim(xmin, xmax)
ax.set_ylim(ymin, ymax)
ax.set_xticks([xmin, xmax])
ax.set_yticks([ymin, ymax])
def plot_sample_and_density(model, target_dist, args, ranges_density=[[-5,20],[-10,10]], ranges_sample=[[-4,4],[-4,4]], step=None):
model.eval()
fig, axs = plt.subplots(1, 2, figsize=(6,3))
# sample target distribution and pass through model
data = target_dist.sample((2000,))
u, _ = model(data)
# plot density and sample
plot_density(model, axs[0], ranges_density, args.flip_var_order)
plot_dist_sample(u, axs[1], ranges_sample)
# format and save
matplotlib.rcParams.update({'xtick.labelsize': 'xx-small', 'ytick.labelsize': 'xx-small'})
plt.tight_layout()
plt.savefig(os.path.join(args.output_dir, 'sample' + (step != None)*'_epoch_{}'.format(step) + '.png'))
plt.close()
# --------------------
# Run
# --------------------
if __name__ == '__main__':
args = parser.parse_args()
# setup file ops
if not os.path.isdir(args.output_dir):
os.makedirs(args.output_dir)
# setup device
args.device = torch.device('cuda:0' if torch.cuda.is_available() and not args.no_cuda else 'cpu')
torch.manual_seed(args.seed)
if args.device.type == 'cuda': torch.cuda.manual_seed(args.seed)
# load data
if args.conditional: assert args.dataset in ['MNIST', 'CIFAR10'], 'Conditional inputs only available for labeled datasets MNIST and CIFAR10.'
train_dataloader, test_dataloader = fetch_dataloaders(args.dataset, args.batch_size, args.device, args.flip_toy_var_order)
args.input_size = train_dataloader.dataset.input_size
args.input_dims = train_dataloader.dataset.input_dims
args.cond_label_size = train_dataloader.dataset.label_size if args.conditional else None
# model
if args.model == 'made':
model = MADE(args.input_size, args.hidden_size, args.n_hidden, args.cond_label_size,
args.activation_fn, args.input_order)
elif args.model == 'mademog':
assert args.n_components > 1, 'Specify more than 1 component for mixture of gaussians models.'
model = MADEMOG(args.n_components, args.input_size, args.hidden_size, args.n_hidden, args.cond_label_size,
args.activation_fn, args.input_order)
elif args.model == 'maf':
model = MAF(args.n_blocks, args.input_size, args.hidden_size, args.n_hidden, args.cond_label_size,
args.activation_fn, args.input_order, batch_norm=not args.no_batch_norm)
elif args.model == 'mafmog':
assert args.n_components > 1, 'Specify more than 1 component for mixture of gaussians models.'
model = MAFMOG(args.n_blocks, args.n_components, args.input_size, args.hidden_size, args.n_hidden, args.cond_label_size,
args.activation_fn, args.input_order, batch_norm=not args.no_batch_norm)
elif args.model =='realnvp':
model = RealNVP(args.n_blocks, args.input_size, args.hidden_size, args.n_hidden, args.cond_label_size,
batch_norm=not args.no_batch_norm)
else:
raise ValueError('Unrecognized model.')
model = model.to(args.device)
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr, weight_decay=1e-6)
if args.restore_file:
# load model and optimizer states
state = torch.load(args.restore_file, map_location=args.device)
model.load_state_dict(state['model_state'])
optimizer.load_state_dict(state['optimizer_state'])
args.start_epoch = state['epoch'] + 1
# set up paths
args.output_dir = os.path.dirname(args.restore_file)
args.results_file = os.path.join(args.output_dir, args.results_file)
print('Loaded settings and model:')
print(pprint.pformat(args.__dict__))
print(model)
print(pprint.pformat(args.__dict__), file=open(args.results_file, 'a'))
print(model, file=open(args.results_file, 'a'))
if args.train:
train_and_evaluate(model, train_dataloader, test_dataloader, optimizer, args)
if args.evaluate:
evaluate(model, test_dataloader, None, args)
if args.generate:
if args.dataset == 'TOY':
base_dist = train_dataloader.dataset.base_dist
plot_sample_and_density(model, base_dist, args, ranges_density=[[-15,4],[-3,3]], ranges_sample=[[-1.5,1.5],[-3,3]])
elif args.dataset == 'MNIST':
generate(model, train_dataloader.dataset.lam, args)