-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcoco2kitti.py
83 lines (71 loc) · 3.39 KB
/
coco2kitti.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import os
import sys
# add the path to the COCO API to the system path
sys.path.append("coco/PythonAPI")
from pycocotools.coco import COCO
# define a function to convert COCO annotations to KITTI format
def coco2kitti(catNms, annFile, path):
# initialize COCO api for instance annotations
coco = COCO(annFile)
# Create an index for the category names
cats = coco.loadCats(coco.getCatIds())
cat_idx = {}
for c in cats:
cat_idx[c['id']] = c['name']
# print out the class names present in the dataset
print(f'\nClass names present in the dataset:\n{cat_idx}')
# iterate through each image in the dataset
for img in coco.imgs:
# Get all annotation IDs for the image
catIds = coco.getCatIds(catNms=catNms)
annIds = coco.getAnnIds(imgIds=[img], catIds=catIds)
# If there are annotations, create a label file
if len(annIds) > 0:
# Get image filename
img_fname = coco.imgs[img]['file_name']
# Split the filename into its components and construct the label file name
split = img_fname.split(".")
filename = f"{split[0]}.{split[1]}.{split[2]}.txt"
# Open the label file for writing
with open(f"{path}/{filename}", 'w') as label_file:
# load the annotations for the image
anns = coco.loadAnns(annIds)
# iterate through each annotation
for a in anns:
bbox = a['bbox']
# Convert COCO bbox coords to Kitti ones
bbox = [bbox[0], bbox[1], bbox[2] + bbox[0], bbox[3] + bbox[1]]
bbox = [str(b) for b in bbox]
catname = cat_idx[a['category_id']]
# Format line in label file
# Note: all whitespace will be removed from class names
out_str = [catname.replace(" ", "")
+ ' ' + ' '.join(['0'] * 3)
+ ' ' + ' '.join([b for b in bbox])
+ ' ' + ' '.join(['0'] * 7)
+ '\n']
# write the label line to the label file
label_file.write(out_str[0])
# print out the total number of files processed
print(f'\n\nTotal files processed: {img}')
if __name__ == '__main__':
"""
Note:
If your are not converting roboflow annotations, change the code in line 33, 34
"""
# json annotation file complete path
annFile = r'datasets/Retail_Coolers/coco-annotation/_annotations.coco.json'
# complete destination path, on which you want to place your annotations
destPath = r"datasets/Retail_Coolers/kitti-annotations"
# If this list is populated then label files will only be produced for images containing the listed classes
# and only the listed classes will be in the label file
# EXAMPLE:
catNms = ['empty', 'product']
# Check if a labels folder exists and, if not, make one
# If it exists already, exit to avoid overwriting
if os.path.isdir(destPath):
print(f'\nWarning!. Labels folder already exists at path {destPath}\nHint: Delete it if you want to create new one')
else:
os.mkdir(destPath)
# Call the function
coco2kitti(catNms, annFile, destPath)