-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlink_pred_enhancement.py
116 lines (92 loc) · 4.04 KB
/
link_pred_enhancement.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
import torch
import torch.nn.functional as F
import torch_geometric.transforms as T
from torch_geometric.datasets import DBLP
from torch_geometric.utils import negative_sampling
from sklearn.metrics import roc_auc_score
import tqdm
import os
from modules.basic_link_pred import Model
from utils.save_model import save_model
def main():
# We initialize conference node features with a single one-vector as feature:
dataset = DBLP('./data/dblp', transform=T.Constant(node_types='conference'))
data = dataset[0]
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
edge_type = ('author', 'to', 'paper')
rev_edge_type = ("paper", "to", "author")
predict_links(data, device, 0.9, edge_type, rev_edge_type)
def predict_links(data, device, threshold, edge_type, rev_edge_type):
print(data)
model = Model(data.metadata(), hidden_channels=50, num_layers=10)
transform = T.RandomLinkSplit(
num_val=0.1,
num_test=0.1,
disjoint_train_ratio=0.3,
neg_sampling_ratio=2.0,
add_negative_train_samples=True,
edge_types=edge_type,
rev_edge_types=rev_edge_type
)
train_data, val_data, test_data = transform(data)
train_link_pred(train_data, val_data, model, edge_type)
with torch.no_grad():
pred = model(train_data, edge_type)
pred_min, pred_max = pred.min(), pred.max()
train_and_val = torch.cat([train_data[edge_type].edge_index, val_data[edge_type].edge_index], dim=1)
sizes = train_data[edge_type[0]].x.shape[0], train_data[edge_type[2]].x.shape[0]
potential_links = negative_sampling(train_and_val, num_nodes=sizes, num_neg_samples=5000)
#check which data to use as base
train_data[edge_type].edge_label_index = potential_links
#decide yes/no for random potential links
with torch.no_grad():
pred = model(train_data, edge_type)
pred = scale_prediction(pred, pred_max, pred_min).detach().cpu().numpy()
new_links = potential_links[:,pred > threshold]
data=data.to(device)
data[edge_type].edge_index = torch.cat([data[edge_type].edge_index, new_links],dim=1)
rev_new_links = torch.roll(new_links,1,0)
data[rev_edge_type].edge_index = torch.cat([data[rev_edge_type].edge_index, rev_new_links],dim=1)
return data.cpu()
def scale_prediction(prediction, max, min):
pred_norm = (prediction - min ) / ( max - min)
return pred_norm
def train_epoch(data, model, optimizer, edge_type):
optimizer.zero_grad()
model.train()
pred = model(data, edge_type)
ground_truth = data[edge_type].edge_label
loss = F.binary_cross_entropy_with_logits(pred, ground_truth)
loss.backward()
optimizer.step()
return float(loss)
@torch.no_grad
def eval_epoch(data, model, edge_type):
model.eval()
pred = model(data, edge_type)
ground_truth = data[edge_type].edge_label
score = roc_auc_score(ground_truth.cpu().numpy(), pred.cpu().numpy())
return score
def train_link_pred(train_data, val_data, model, edge_type, epochs=500):
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = model.to(device)
train_data = train_data.to(device)
val_data = val_data.to(device)
with torch.no_grad(): # Initialize lazy modules.
_ = model(train_data, edge_type)
optimizer = torch.optim.Adam(model.parameters(), lr=0.005, weight_decay=0.001)
train_loss_history, val_loss_history = [],[]
best_val_score = 0
directory = 'graph-learning/saved_models/link_predictor'
model_name = 'link_prediction_model'
for epoch in tqdm.trange(epochs):
train_loss_history.append(train_epoch(train_data, model, optimizer, edge_type))
val_score = eval_epoch(val_data, model, edge_type)
if val_score > best_val_score:
save_model(model, directory, file_name=model_name)
best_val_score = val_score
val_loss_history.append(val_score)
path = os.path.join(directory, model_name+'.pt')
model.load_state_dict(torch.load(path))
if __name__ == '__main__':
main()