-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel_train_cifar_sensors.py
148 lines (118 loc) · 4.25 KB
/
model_train_cifar_sensors.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import numpy as np
import torch
from model.model_single import NEURAL_single
from model.model_single import Net_cifar
from dataset.dataset import Cifar10
import time
from torch.nn import CrossEntropyLoss
from tqdm import tqdm
from model.resnet import resnet56
import torch.optim as optim
import torchvision.transforms as transforms
import torchvision
import torch.nn.functional as F
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
lr_rate = 0.01
batch_size = 200
n_iters = 180
noise_sd = 0.25
sensor_id = 18
W = 5
# airplane : 0
# automobile : 1
# bird : 2
# cat : 3
# deer : 4
# dog : 5
# frog : 6
# horse : 7
# ship : 8
# truck : 9
# is_animal: 10
# is_transportation: 11
# in_sky_or_on_land: 12
# in_water: 13
# only_on_land: 14
# four_legs: 15
# two_legs: 16
# have_wheels: 17
# no_legs_wheels: 18
label_mapping = np.array([
[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0],
[0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0],
[0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0],
[0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0]])
print('[Data] Preparing .... ')
data = Cifar10(batch_size=batch_size)
data.data_set_up(istrain=True)
data.greeting()
transform = transforms.Compose([
transforms.Pad(4),
transforms.RandomHorizontalFlip(),
transforms.RandomCrop(32),
transforms.ToTensor(),])
trainset = torchvision.datasets.CIFAR10(root='conformal_prediction/data/', train=True,
download=False, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=batch_size,
shuffle=True, num_workers=2)
print('[Data] Done .... ')
print('[Model] Preparing .... ')
# model = Net_cifar()
# model = NEURAL_single(n_class=10, n_channel=3)
model = resnet56(n_class=1)
model = model.cuda()
print('[Model] Done .... ')
# loss_f = torch.nn.CrossEntropyLoss()
# optimizer = torch.optim.SGD(model.parameters(), lr=lr_rate, momentum=0.9, weight_decay = 1e-4)
optimizer = optim.SGD(model.parameters(), lr=1e-1, momentum=0.9, weight_decay=1e-4, nesterov=False)
loss_f = F.cross_entropy
lr_scheduler= optim.lr_scheduler.MultiStepLR(optimizer, milestones=[91, 137], gamma=0.1)
label_mapping = label_mapping[:,sensor_id]
print(sensor_id)
print(label_mapping)
print('[Training] Starting ...')
for i in tqdm(range(n_iters)):
for X,GT in trainloader:
# X, GT = data.random_train_batch()
X = X.cuda()
X = X + torch.randn_like(X).cuda() * noise_sd
GT = torch.from_numpy(label_mapping[GT.numpy()]).cuda()
GT = GT.cuda()
Y = model(X)
weight = torch.ones(GT.shape)
weight[GT == 1] = W
weight = weight.cuda()
# loss = loss_f(Y,GT)
loss = torch.mean(CrossEntropyLoss(reduction='none')(Y, GT) * weight)
optimizer.zero_grad()
loss.backward()
optimizer.step()
lr_scheduler.step()
if (i + 1) % 3 == 0:
print(f'loss at iteration {i}: {loss.item()}')
if (i + 1) % 3 == 0:
print('### Eval ###')
model.eval()
correct = 0
total = 0
X, GT = data.sequential_test_batch()
while X is not None:
# for X, GT in testloader:
X = X.cuda()
# X = X + torch.randn_like(X).cuda() * noise_sd
GT = torch.from_numpy(label_mapping[GT.numpy()]).cuda()
GT = GT.cuda()
Y = model(X)
_, predicted = torch.max(Y.data, 1)
correct += (predicted == GT).sum().item()
total += len(GT)
X, GT = data.sequential_test_batch()
print(f'Iteration {i}: acc: {correct / total}')
model.train()
torch.save(model.cpu(), f'pretrained_models/cifar10/model_sensor_{sensor_id}_cifar10_{noise_sd}')