Skip to content

Latest commit

 

History

History
122 lines (95 loc) · 4.2 KB

README.md

File metadata and controls

122 lines (95 loc) · 4.2 KB

Setup for deep learning baseline with real-world data

This component of Jax3DP3 runs end-to-end PoseCNN (segmentation) and DenseFusion (pose estimation) to detect and localize objects given a single RGB-D image. (Note: The model-training capability of this module has not been tested, and the scripts assume the existence of pretrained .pth models for PoseCNN and DenseFusion.)

Required environment

  • Ubuntu 16.04 or above
  • PyTorch 0.4.1 or above
  • CUDA 9.1 or above
  • Python3

Installation (Reference)

  1. Install PyTorch

  2. Install Eigen from the Github source code here

        # change eigen version
        apt remove libeigen3-dev
        cd /opt
        git clone https://gitlab.com/libeigen/eigen.git
        cd eigen
        mkdir build
        cd build
        cmake ..
        make
        make install
        # make a symbolic link
        cd /usr/local/include
        sudo ln -sf eigen3/Eigen Eigen
        sudo ln -sf eigen3/unsupported unsupported
        sudo ln -sf eigen3/Eigen /usr/include/Eigen
        sudo cp -r /usr/local/include/eigen3 /usr/include/eigen3
  3. Install Sophus from the Github source code here

        cd /opt
        git clone https://github.com/strasdat/Sophus
        cd Sophus
        git reset --hard ceb6380a1584b300e687feeeea8799353d48859f
        # TODO include patch in CMake  (do we still need?)
        #-find_package(Eigen3 REQUIRED)
        #+find_package(PkgConfig)
        #+pkg_search_module(Eigen3 REQUIRED eigen3)
        # add -Wno-error=deprecated-copy
        mkdir build
        cd build
        cmake ..
        make
        make install
  4. Install python packages

    pip install -r requirement.txt
  5. Initialize the submodules in ycb_render

    git submodule update --init --recursive
  6. Compile the new layers under $ROOT/lib/layers (for PoseCNN)

    cd $ROOT/lib/layers
    python setup.py install
  7. Compile cython components (for PoseCNN)

    cd $ROOT/lib/utils
    python setup.py build_ext --inplace
  8. Compile the ycb_render in $ROOT/ycb_render (for PoseCNN)

    cd $ROOT/ycb_render
    python setup.py develop

Download (Also see: PoseCNN, DenseFusion)

  • 3D models of YCB Objects here (3G). Save as $ROOT/data/models or use a symbol link.

  • Pre-trained PoseCNN checkpoints here (4G). Save files as $ROOT/data/trained_checkpoints/posecnn or use a symbol link.

  • Pre-trained DenseFusion checkpoints here. Save trained_checkpoints.zip into $ROOT/trained_checkpoints/densefusion or use a symbol link.

PoseCNN Demo

  • First test the PoseCNN model with the provided demo.

run the following script Shell ./experiments/scripts/posecnn/demo.sh

  • If you get an error, try rebuilding libassimp 4.1.0 from source, following the instructions here
  • Results will be in $ROOT/datasets/posecnn/demo.

PoseCNN + DenseFusion Demo

  • Now test the full object detection and pose estimation workflow.

run the following python script Shell python tools/test_image_pandas_ycb_full.py # TODO parse args

  • Results will be in experiments/eval_result/pandas. # TODO

Testing on custom data containing YCB objects

  • This is to run the posecnn+densefusion test with your own data
  • For each hxw image frame you wish to test, create a .pik file containing the fields:
    • rgb: (h,w,3) rgb data
    • depth: (h,w) depth data
    • factor_depth: a (divisive, not multiplicative) scaling factor for the depth data
    • intrinsics : a 3x3 camera intrinsics matrix
  • Place the folder containing these .pik files as a subfolder within $ROOT/datasets/pandas/data.