-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path43_substring_divisibility.rb
39 lines (29 loc) · 1.5 KB
/
43_substring_divisibility.rb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
# The number, 1406357289, is a 0 to 9 pandigital number because it is made up of each of the digits 0 to 9 in some order, but it also has a rather interesting sub-string divisibility property.
# Let d1 be the 1st digit, d2 be the 2nd digit, and so on. In this way, we note the following:
# d2d3d4=406 is divisible by 2
# d3d4d5=063 is divisible by 3
# d4d5d6=635 is divisible by 5
# d5d6d7=357 is divisible by 7
# d6d7d8=572 is divisible by 11
# d7d8d9=728 is divisible by 13
# d8d9d10=289 is divisible by 17
# Find the sum of all 0 to 9 pandigital numbers with this property.
substring_divisible_pandigitals_sum = 0
substring_divisible_pandigitals = []
pandigital_digits = 1_406_357_289.to_s.split('').map { |s| s.to_i }
permutations = pandigital_digits.permutation.to_a
permutations.each do |array|
array = array.map { |i| i.to_s }
first_set = array[1..3].join.to_f.to_i
second_set = array[2..4].join.to_f.to_i
third_set = array[3..5].join.to_f.to_i
fourth_set = array[4..6].join.to_f.to_i
fifth_set = array[5..7].join.to_f.to_i
sixth_set = array[6..8].join.to_f.to_i
seventh_set = array[7..9].join.to_f.to_i
if first_set % 2 == 0 && second_set % 3 == 0 && third_set % 5 == 0 && fourth_set % 7 == 0 && fifth_set % 11 == 0 && sixth_set % 13 == 0 && seventh_set % 17 == 0
substring_divisible_pandigitals << array.join.to_i
end
end
substring_divisible_pandigitals_sum = substring_divisible_pandigitals.inject(0) { |sum, n| sum + n }
puts substring_divisible_pandigitals_sum