-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
74 lines (58 loc) · 2.49 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
import os
import csv
os.environ['CUDA_DEVICE_ORDER'] = 'PCI_BUS_ID'
os.environ['CUDA_VISIBLE_DEVICES']='7'
from unityagents import UnityEnvironment
import torch
from torch.utils.tensorboard import SummaryWriter
import numpy as np
from collections import deque
import matplotlib.pyplot as plt
from dqn_agent import Agent
env = UnityEnvironment(file_name="Banana_Linux_NoVis/Banana.x86_64")
# env = UnityEnvironment(file_name="VisualBanana_Linux/Banana.x86_64")
brain_name = env.brain_names[0]
brain = env.brains[brain_name]
env_info = env.reset(train_mode=True)[brain_name]
action_size = brain.vector_action_space_size
state = env_info.vector_observations[0]
state_size = state.shape[0]
writer = SummaryWriter('/home/aray/runs')
def train(agent, n_episodes=2000, max_t=1000, eps_start=1.0, eps_end=0.01, eps_decay=0.995):
"""Deep Q-Learning.
Params
======
n_episodes (int): maximum number of training episodes
max_t (int): maximum number of timesteps per episode
eps_start (float): starting value of epsilon, for epsilon-greedy action selection
eps_end (float): minimum value of epsilon
eps_decay (float): multiplicative factor (per episode) for decreasing epsilon
"""
eps = eps_start # initialize epsilon
for i_episode in range(1, n_episodes+1):
env_info = env.reset(train_mode=False)[brain_name]
state = env_info.vector_observations[0]
score = 0
done = False
for t in range(max_t):
action = agent.act(state, eps)
env_info = env.step(action)[brain_name]
next_state = env_info.vector_observations[0]
reward = env_info.rewards[0]
done = env_info.local_done[0]
agent.step(state, action, reward, next_state, done)
state = next_state
score += reward
if done:
break
writer.add_scalar('score', score, i_episode)
torch.save(agent.qnetwork_local.state_dict(), 'checkpoint.pth')
eps = max(eps_end, eps_decay*eps) # decrease epsilon
print('\rEpisode {}\tAverage Score: {:.2f}'.format(i_episode, np.mean(scores_window)), end="")
if i_episode % 100 == 0:
print('\rEpisode {}\tAverage Score: {:.2f}'.format(i_episode, np.mean(scores_window)))
# if np.mean(scores_window)>=200.0:
break
return scores
agent = Agent(state_size, action_size)
scores = train(agent)