forked from levex/cgroups-rs
-
Notifications
You must be signed in to change notification settings - Fork 48
/
memory.rs
1220 lines (1143 loc) · 42.3 KB
/
memory.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Copyright (c) 2018 Levente Kurusa
// Copyright (c) 2020 Ant Group
//
// SPDX-License-Identifier: Apache-2.0 or MIT
//
//! This module contains the implementation of the `memory` cgroup subsystem.
//!
//! See the Kernel's documentation for more information about this subsystem, found at:
//! [Documentation/cgroup-v1/memory.txt](https://www.kernel.org/doc/Documentation/cgroup-v1/memory.txt)
use log::warn;
use std::collections::HashMap;
use std::io::Write;
use std::path::PathBuf;
use std::sync::mpsc::Receiver;
use crate::error::ErrorKind::*;
use crate::error::*;
use crate::events;
use crate::{read_i64_from, read_string_from, read_u64_from};
use crate::flat_keyed_to_hashmap;
use crate::{
ControllIdentifier, ControllerInternal, Controllers, CustomizedAttribute, MaxValue,
MemoryResources, Resources, Subsystem,
};
/// A controller that allows controlling the `memory` subsystem of a Cgroup.
///
/// In essence, using the memory controller, the user can gather statistics about the memory usage
/// of the tasks in the control group. Additonally, one can also set powerful limits on their
/// memory usage.
#[derive(Debug, Clone)]
pub struct MemController {
base: PathBuf,
path: PathBuf,
v2: bool,
}
#[derive(Default, Debug, PartialEq, Eq)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
pub struct SetMemory {
pub low: Option<MaxValue>,
pub high: Option<MaxValue>,
pub min: Option<MaxValue>,
pub max: Option<MaxValue>,
}
/// Controls statistics and controls about the OOM killer operating in this control group.
#[derive(Default, Debug, PartialEq, Eq)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
pub struct OomControl {
/// If true, the OOM killer has been disabled for the tasks in this control group.
pub oom_kill_disable: bool,
/// Is the OOM killer currently running for the tasks in the control group?
pub under_oom: bool,
/// How many tasks were killed by the OOM killer so far.
pub oom_kill: u64,
}
#[allow(clippy::unnecessary_wraps)]
fn parse_oom_control(s: String) -> Result<OomControl> {
let spl = s.split_whitespace().collect::<Vec<_>>();
let oom_kill_disable = if spl.len() > 1 {
spl[1].parse::<u64>().unwrap() == 1
} else {
false
};
let under_oom = if spl.len() > 3 {
spl[3].parse::<u64>().unwrap() == 1
} else {
false
};
let oom_kill = if spl.len() > 5 {
spl[5].parse::<u64>().unwrap()
} else {
0
};
Ok(OomControl {
oom_kill_disable,
under_oom,
oom_kill,
})
}
/// Contains statistics about the NUMA locality of the control group's tasks.
#[derive(Default, Debug, PartialEq, Eq)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
pub struct NumaStat {
/// Total amount of pages used by the control group.
pub total_pages: u64,
/// Total amount of pages used by the control group, broken down by NUMA node.
pub total_pages_per_node: Vec<u64>,
/// Total amount of file pages used by the control group.
pub file_pages: u64,
/// Total amount of file pages used by the control group, broken down by NUMA node.
pub file_pages_per_node: Vec<u64>,
/// Total amount of anonymous pages used by the control group.
pub anon_pages: u64,
/// Total amount of anonymous pages used by the control group, broken down by NUMA node.
pub anon_pages_per_node: Vec<u64>,
/// Total amount of unevictable pages used by the control group.
pub unevictable_pages: u64,
/// Total amount of unevictable pages used by the control group, broken down by NUMA node.
pub unevictable_pages_per_node: Vec<u64>,
/// Same as `total_pages`, but includes the descedant control groups' number as well.
pub hierarchical_total_pages: u64,
/// Same as `total_pages_per_node`, but includes the descedant control groups' number as well.
pub hierarchical_total_pages_per_node: Vec<u64>,
/// Same as `file_pages`, but includes the descedant control groups' number as well.
pub hierarchical_file_pages: u64,
/// Same as `file_pages_per_node`, but includes the descedant control groups' number as well.
pub hierarchical_file_pages_per_node: Vec<u64>,
/// Same as `anon_pages`, but includes the descedant control groups' number as well.
pub hierarchical_anon_pages: u64,
/// Same as `anon_pages_per_node`, but includes the descedant control groups' number as well.
pub hierarchical_anon_pages_per_node: Vec<u64>,
/// Same as `unevictable`, but includes the descedant control groups' number as well.
pub hierarchical_unevictable_pages: u64,
/// Same as `unevictable_per_node`, but includes the descedant control groups' number as well.
pub hierarchical_unevictable_pages_per_node: Vec<u64>,
}
#[allow(clippy::unnecessary_wraps)]
fn parse_numa_stat(s: String) -> Result<NumaStat> {
// Parse the number of nodes
let _nodes = (s.split_whitespace().count() - 8) / 8;
let mut ls = s.lines();
let total_line = ls.next().unwrap();
let file_line = ls.next().unwrap();
let anon_line = ls.next().unwrap();
let unevict_line = ls.next().unwrap();
let hier_total_line = ls.next().unwrap_or_default();
let hier_file_line = ls.next().unwrap_or_default();
let hier_anon_line = ls.next().unwrap_or_default();
let hier_unevict_line = ls.next().unwrap_or_default();
Ok(NumaStat {
total_pages: total_line
.split(|x| x == ' ' || x == '=')
.collect::<Vec<_>>()[1]
.parse::<u64>()
.unwrap_or(0),
total_pages_per_node: {
let spl = &total_line.split(' ').collect::<Vec<_>>()[1..];
spl.iter()
.map(|x| {
x.split('=').collect::<Vec<_>>()[1]
.parse::<u64>()
.unwrap_or(0)
})
.collect()
},
file_pages: file_line
.split(|x| x == ' ' || x == '=')
.collect::<Vec<_>>()[1]
.parse::<u64>()
.unwrap_or(0),
file_pages_per_node: {
let spl = &file_line.split(' ').collect::<Vec<_>>()[1..];
spl.iter()
.map(|x| {
x.split('=').collect::<Vec<_>>()[1]
.parse::<u64>()
.unwrap_or(0)
})
.collect()
},
anon_pages: anon_line
.split(|x| x == ' ' || x == '=')
.collect::<Vec<_>>()[1]
.parse::<u64>()
.unwrap_or(0),
anon_pages_per_node: {
let spl = &anon_line.split(' ').collect::<Vec<_>>()[1..];
spl.iter()
.map(|x| {
x.split('=').collect::<Vec<_>>()[1]
.parse::<u64>()
.unwrap_or(0)
})
.collect()
},
unevictable_pages: unevict_line
.split(|x| x == ' ' || x == '=')
.collect::<Vec<_>>()[1]
.parse::<u64>()
.unwrap_or(0),
unevictable_pages_per_node: {
let spl = &unevict_line.split(' ').collect::<Vec<_>>()[1..];
spl.iter()
.map(|x| {
x.split('=').collect::<Vec<_>>()[1]
.parse::<u64>()
.unwrap_or(0)
})
.collect()
},
hierarchical_total_pages: {
if !hier_total_line.is_empty() {
hier_total_line
.split(|x| x == ' ' || x == '=')
.collect::<Vec<_>>()[1]
.parse::<u64>()
.unwrap_or(0)
} else {
0
}
},
hierarchical_total_pages_per_node: {
if !hier_total_line.is_empty() {
let spl = &hier_total_line.split(' ').collect::<Vec<_>>()[1..];
spl.iter()
.map(|x| {
x.split('=').collect::<Vec<_>>()[1]
.parse::<u64>()
.unwrap_or(0)
})
.collect()
} else {
Vec::new()
}
},
hierarchical_file_pages: {
if !hier_file_line.is_empty() {
hier_file_line
.split(|x| x == ' ' || x == '=')
.collect::<Vec<_>>()[1]
.parse::<u64>()
.unwrap_or(0)
} else {
0
}
},
hierarchical_file_pages_per_node: {
if !hier_file_line.is_empty() {
let spl = &hier_file_line.split(' ').collect::<Vec<_>>()[1..];
spl.iter()
.map(|x| {
x.split('=').collect::<Vec<_>>()[1]
.parse::<u64>()
.unwrap_or(0)
})
.collect()
} else {
Vec::new()
}
},
hierarchical_anon_pages: {
if !hier_anon_line.is_empty() {
hier_anon_line
.split(|x| x == ' ' || x == '=')
.collect::<Vec<_>>()[1]
.parse::<u64>()
.unwrap_or(0)
} else {
0
}
},
hierarchical_anon_pages_per_node: {
if !hier_anon_line.is_empty() {
let spl = &hier_anon_line.split(' ').collect::<Vec<_>>()[1..];
spl.iter()
.map(|x| {
x.split('=').collect::<Vec<_>>()[1]
.parse::<u64>()
.unwrap_or(0)
})
.collect()
} else {
Vec::new()
}
},
hierarchical_unevictable_pages: {
if !hier_unevict_line.is_empty() {
hier_unevict_line
.split(|x| x == ' ' || x == '=')
.collect::<Vec<_>>()[1]
.parse::<u64>()
.unwrap_or(0)
} else {
0
}
},
hierarchical_unevictable_pages_per_node: {
if !hier_unevict_line.is_empty() {
let spl = &hier_unevict_line.split(' ').collect::<Vec<_>>()[1..];
spl.iter()
.map(|x| {
x.split('=').collect::<Vec<_>>()[1]
.parse::<u64>()
.unwrap_or(0)
})
.collect()
} else {
Vec::new()
}
},
})
}
#[derive(Default, Debug, PartialEq, Eq)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
pub struct MemoryStat {
pub cache: u64,
pub rss: u64,
pub rss_huge: u64,
pub shmem: u64,
pub mapped_file: u64,
pub dirty: u64,
pub writeback: u64,
pub swap: u64,
pub pgpgin: u64,
pub pgpgout: u64,
pub pgfault: u64,
pub pgmajfault: u64,
pub inactive_anon: u64,
pub active_anon: u64,
pub inactive_file: u64,
pub active_file: u64,
pub unevictable: u64,
pub hierarchical_memory_limit: i64,
pub hierarchical_memsw_limit: i64,
pub total_cache: u64,
pub total_rss: u64,
pub total_rss_huge: u64,
pub total_shmem: u64,
pub total_mapped_file: u64,
pub total_dirty: u64,
pub total_writeback: u64,
pub total_swap: u64,
pub total_pgpgin: u64,
pub total_pgpgout: u64,
pub total_pgfault: u64,
pub total_pgmajfault: u64,
pub total_inactive_anon: u64,
pub total_active_anon: u64,
pub total_inactive_file: u64,
pub total_active_file: u64,
pub total_unevictable: u64,
pub raw: HashMap<String, u64>,
}
#[allow(clippy::unnecessary_wraps)]
fn parse_memory_stat(s: String) -> Result<MemoryStat> {
let mut raw = HashMap::new();
for l in s.lines() {
let t: Vec<&str> = l.split(' ').collect();
if t.len() != 2 {
continue;
}
let n = t[1].trim().parse::<u64>();
if n.is_err() {
continue;
}
raw.insert(t[0].to_string(), n.unwrap());
}
Ok(MemoryStat {
cache: *raw.get("cache").unwrap_or(&0),
rss: *raw.get("rss").unwrap_or(&0),
rss_huge: *raw.get("rss_huge").unwrap_or(&0),
shmem: *raw.get("shmem").unwrap_or(&0),
mapped_file: *raw.get("mapped_file").unwrap_or(&0),
dirty: *raw.get("dirty").unwrap_or(&0),
writeback: *raw.get("writeback").unwrap_or(&0),
swap: *raw.get("swap").unwrap_or(&0),
pgpgin: *raw.get("pgpgin").unwrap_or(&0),
pgpgout: *raw.get("pgpgout").unwrap_or(&0),
pgfault: *raw.get("pgfault").unwrap_or(&0),
pgmajfault: *raw.get("pgmajfault").unwrap_or(&0),
inactive_anon: *raw.get("inactive_anon").unwrap_or(&0),
active_anon: *raw.get("active_anon").unwrap_or(&0),
inactive_file: *raw.get("inactive_file").unwrap_or(&0),
active_file: *raw.get("active_file").unwrap_or(&0),
unevictable: *raw.get("unevictable").unwrap_or(&0),
hierarchical_memory_limit: *raw.get("hierarchical_memory_limit").unwrap_or(&0) as i64,
hierarchical_memsw_limit: *raw.get("hierarchical_memsw_limit").unwrap_or(&0) as i64,
total_cache: *raw.get("total_cache").unwrap_or(&0),
total_rss: *raw.get("total_rss").unwrap_or(&0),
total_rss_huge: *raw.get("total_rss_huge").unwrap_or(&0),
total_shmem: *raw.get("total_shmem").unwrap_or(&0),
total_mapped_file: *raw.get("total_mapped_file").unwrap_or(&0),
total_dirty: *raw.get("total_dirty").unwrap_or(&0),
total_writeback: *raw.get("total_writeback").unwrap_or(&0),
total_swap: *raw.get("total_swap").unwrap_or(&0),
total_pgpgin: *raw.get("total_pgpgin").unwrap_or(&0),
total_pgpgout: *raw.get("total_pgpgout").unwrap_or(&0),
total_pgfault: *raw.get("total_pgfault").unwrap_or(&0),
total_pgmajfault: *raw.get("total_pgmajfault").unwrap_or(&0),
total_inactive_anon: *raw.get("total_inactive_anon").unwrap_or(&0),
total_active_anon: *raw.get("total_active_anon").unwrap_or(&0),
total_inactive_file: *raw.get("total_inactive_file").unwrap_or(&0),
total_active_file: *raw.get("total_active_file").unwrap_or(&0),
total_unevictable: *raw.get("total_unevictable").unwrap_or(&0),
raw,
})
}
/// Contains statistics about the current usage of memory and swap (together, not seperately) by
/// the control group's tasks.
#[derive(Debug)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
pub struct MemSwap {
/// How many times the limit has been hit.
pub fail_cnt: u64,
/// Memory and swap usage limit in bytes.
pub limit_in_bytes: i64,
/// Current usage of memory and swap in bytes.
pub usage_in_bytes: u64,
/// The maximum observed usage of memory and swap in bytes.
pub max_usage_in_bytes: u64,
}
/// State of and statistics gathered by the kernel about the memory usage of the control group's
/// tasks.
#[derive(Debug)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
pub struct Memory {
/// How many times the limit has been hit.
pub fail_cnt: u64,
/// The limit in bytes of the memory usage of the control group's tasks.
pub limit_in_bytes: i64,
/// The current usage of memory by the control group's tasks.
pub usage_in_bytes: u64,
/// The maximum observed usage of memory by the control group's tasks.
pub max_usage_in_bytes: u64,
/// Whether moving charges at immigrate is allowed.
pub move_charge_at_immigrate: u64,
/// Contains various statistics about the NUMA locality of the control group's tasks.
///
/// The format of this field (as lifted from the kernel sources):
/// ```text
/// total=<total pages> N0=<node 0 pages> N1=<node 1 pages> ...
/// file=<total file pages> N0=<node 0 pages> N1=<node 1 pages> ...
/// anon=<total anon pages> N0=<node 0 pages> N1=<node 1 pages> ...
/// unevictable=<total anon pages> N0=<node 0 pages> N1=<node 1 pages> ...
/// hierarchical_<counter>=<counter pages> N0=<node 0 pages> N1=<node 1 pages> ...
/// ```
pub numa_stat: NumaStat,
/// Various statistics and control information about the Out Of Memory killer.
pub oom_control: OomControl,
/// Allows setting a limit to memory usage which is enforced when the system (note, _not_ the
/// control group) detects memory pressure.
pub soft_limit_in_bytes: i64,
/// Contains a wide array of statistics about the memory usage of the tasks in the control
/// group.
pub stat: MemoryStat,
/// Set the tendency of the kernel to swap out parts of the address space consumed by the
/// control group's tasks.
///
/// Note that setting this to zero does *not* prevent swapping, use `mlock(2)` for that
/// purpose.
pub swappiness: u64,
/// If set, then under OOM conditions, the kernel will try to reclaim memory from the children
/// of the offending process too. By default, this is not allowed.
pub use_hierarchy: u64,
}
/// The current state of and gathered statistics about the kernel's memory usage for TCP-related
/// data structures.
#[derive(Debug)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
pub struct Tcp {
/// How many times the limit has been hit.
pub fail_cnt: u64,
/// The limit in bytes of the memory usage of the kernel's TCP buffers by control group's
/// tasks.
pub limit_in_bytes: i64,
/// The current memory used by the kernel's TCP buffers related to these tasks.
pub usage_in_bytes: u64,
/// The observed maximum usage of memory by the kernel's TCP buffers (that originated from
/// these tasks).
pub max_usage_in_bytes: u64,
}
/// Gathered statistics and the current state of limitation of the kernel's memory usage. Note that
/// this is per-cgroup, so the kernel can of course use more memory, but it will fail operations by
/// these tasks if it would think that the limits here would be violated. It's important to note
/// that interrupts in particular might not be able to enforce these limits.
#[derive(Debug)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
pub struct Kmem {
/// How many times the limit has been hit.
pub fail_cnt: u64,
/// The limit in bytes of the kernel memory used by the control group's tasks.
pub limit_in_bytes: i64,
/// The current usage of kernel memory used by the control group's tasks, in bytes.
pub usage_in_bytes: u64,
/// The maximum observed usage of kernel memory used by the control group's tasks, in bytes.
pub max_usage_in_bytes: u64,
/// Contains information about the memory usage of the kernel's caches, per control group.
pub slabinfo: String,
}
impl ControllerInternal for MemController {
fn control_type(&self) -> Controllers {
Controllers::Mem
}
fn get_path(&self) -> &PathBuf {
&self.path
}
fn get_path_mut(&mut self) -> &mut PathBuf {
&mut self.path
}
fn get_base(&self) -> &PathBuf {
&self.base
}
fn is_v2(&self) -> bool {
self.v2
}
fn apply(&self, res: &Resources) -> Result<()> {
// get the resources that apply to this controller
let memres: &MemoryResources = &res.memory;
update!(self, set_limit, memres.memory_hard_limit);
update!(self, set_soft_limit, memres.memory_soft_limit);
update!(self, set_kmem_limit, memres.kernel_memory_limit);
update!(self, set_memswap_limit, memres.memory_swap_limit);
update!(self, set_tcp_limit, memres.kernel_tcp_memory_limit);
update!(self, set_swappiness, memres.swappiness);
memres.attrs.iter().for_each(|(k, v)| {
let _ = self.set(k, v);
});
Ok(())
}
}
impl MemController {
/// Contructs a new `MemController` with `root` serving as the root of the control group.
pub fn new(point: PathBuf, root: PathBuf, v2: bool) -> Self {
Self {
base: root,
path: point,
v2,
}
}
// for v2
pub fn set_mem(&self, m: SetMemory) -> Result<()> {
let values = vec![
(m.high, "memory.high"),
(m.low, "memory.low"),
(m.max, "memory.max"),
(m.min, "memory.min"),
];
for value in values {
let v = value.0;
let f = value.1;
if let Some(v) = v {
let v = v.to_string();
self.open_path(f, true).and_then(|mut file| {
file.write_all(v.as_ref()).map_err(|e| {
Error::with_cause(WriteFailed(f.to_string(), format!("{:?}", v)), e)
})
})?;
}
}
Ok(())
}
// for v2
pub fn get_mem(&self) -> Result<SetMemory> {
let mut m: SetMemory = Default::default();
self.get_max_value("memory.high")
.map(|x| m.high = Some(x))?;
self.get_max_value("memory.low").map(|x| m.low = Some(x))?;
self.get_max_value("memory.max").map(|x| m.max = Some(x))?;
self.get_max_value("memory.min").map(|x| m.min = Some(x))?;
Ok(m)
}
fn memory_stat_v2(&self) -> Memory {
let set = self.get_mem().unwrap();
Memory {
fail_cnt: 0,
limit_in_bytes: set.max.unwrap().to_i64(),
usage_in_bytes: self
.open_path("memory.current", false)
.and_then(read_u64_from)
.unwrap_or(0),
max_usage_in_bytes: self
.open_path("memory.peak", false)
.and_then(read_u64_from)
.unwrap_or(0),
move_charge_at_immigrate: 0,
numa_stat: NumaStat::default(),
oom_control: OomControl::default(),
soft_limit_in_bytes: set.low.unwrap().to_i64(),
stat: self
.open_path("memory.stat", false)
.and_then(read_string_from)
.and_then(parse_memory_stat)
.unwrap_or_default(),
swappiness: self
.open_path("memory.swap.current", false)
.and_then(read_u64_from)
.unwrap_or(0),
use_hierarchy: 0,
}
}
/// Gathers overall statistics (and the current state of) about the memory usage of the control
/// group's tasks.
///
/// See the individual fields for more explanation, and as always, remember to consult the
/// kernel Documentation and/or sources.
pub fn memory_stat(&self) -> Memory {
if self.v2 {
return self.memory_stat_v2();
}
Memory {
fail_cnt: self
.open_path("memory.failcnt", false)
.and_then(read_u64_from)
.unwrap_or(0),
limit_in_bytes: self
.open_path("memory.limit_in_bytes", false)
.and_then(read_i64_from)
.unwrap_or(0),
usage_in_bytes: self
.open_path("memory.usage_in_bytes", false)
.and_then(read_u64_from)
.unwrap_or(0),
max_usage_in_bytes: self
.open_path("memory.max_usage_in_bytes", false)
.and_then(read_u64_from)
.unwrap_or(0),
move_charge_at_immigrate: self
.open_path("memory.move_charge_at_immigrate", false)
.and_then(read_u64_from)
.unwrap_or(0),
numa_stat: self
.open_path("memory.numa_stat", false)
.and_then(read_string_from)
.and_then(parse_numa_stat)
.unwrap_or_default(),
oom_control: self
.open_path("memory.oom_control", false)
.and_then(read_string_from)
.and_then(parse_oom_control)
.unwrap_or_default(),
soft_limit_in_bytes: self
.open_path("memory.soft_limit_in_bytes", false)
.and_then(read_i64_from)
.unwrap_or(0),
stat: self
.open_path("memory.stat", false)
.and_then(read_string_from)
.and_then(parse_memory_stat)
.unwrap_or_default(),
swappiness: self
.open_path("memory.swappiness", false)
.and_then(read_u64_from)
.unwrap_or(0),
use_hierarchy: self
.open_path("memory.use_hierarchy", false)
.and_then(read_u64_from)
.unwrap_or(0),
}
}
/// Gathers information about the kernel memory usage of the control group's tasks.
pub fn kmem_stat(&self) -> Kmem {
Kmem {
fail_cnt: self
.open_path("memory.kmem.failcnt", false)
.and_then(read_u64_from)
.unwrap_or(0),
limit_in_bytes: self
.open_path("memory.kmem.limit_in_bytes", false)
.and_then(read_i64_from)
.unwrap_or(-1),
usage_in_bytes: self
.open_path("memory.kmem.usage_in_bytes", false)
.and_then(read_u64_from)
.unwrap_or(0),
max_usage_in_bytes: self
.open_path("memory.kmem.max_usage_in_bytes", false)
.and_then(read_u64_from)
.unwrap_or(0),
slabinfo: self
.open_path("memory.kmem.slabinfo", false)
.and_then(read_string_from)
.unwrap_or_default(),
}
}
/// Gathers information about the control group's kernel memory usage where said memory is
/// TCP-related.
pub fn kmem_tcp_stat(&self) -> Tcp {
Tcp {
fail_cnt: self
.open_path("memory.kmem.tcp.failcnt", false)
.and_then(read_u64_from)
.unwrap_or(0),
limit_in_bytes: self
.open_path("memory.kmem.tcp.limit_in_bytes", false)
.and_then(read_i64_from)
.unwrap_or(0),
usage_in_bytes: self
.open_path("memory.kmem.tcp.usage_in_bytes", false)
.and_then(read_u64_from)
.unwrap_or(0),
max_usage_in_bytes: self
.open_path("memory.kmem.tcp.max_usage_in_bytes", false)
.and_then(read_u64_from)
.unwrap_or(0),
}
}
pub fn memswap_v2(&self) -> MemSwap {
MemSwap {
fail_cnt: self
.open_path("memory.swap.events", false)
.and_then(flat_keyed_to_hashmap)
.map(|x| *x.get("fail").unwrap_or(&0) as u64)
.unwrap(),
limit_in_bytes: self
.open_path("memory.swap.max", false)
.and_then(read_i64_from)
.unwrap_or(0),
usage_in_bytes: self
.open_path("memory.swap.current", false)
.and_then(read_u64_from)
.unwrap_or(0),
max_usage_in_bytes: self
.open_path("memory.swap.peak", false)
.and_then(read_u64_from)
.unwrap_or(0),
}
}
/// Gathers information about the memory usage of the control group including the swap usage
/// (if any).
pub fn memswap(&self) -> MemSwap {
if self.v2 {
return self.memswap_v2();
}
MemSwap {
fail_cnt: self
.open_path("memory.memsw.failcnt", false)
.and_then(read_u64_from)
.unwrap_or(0),
limit_in_bytes: self
.open_path("memory.memsw.limit_in_bytes", false)
.and_then(read_i64_from)
.unwrap_or(0),
usage_in_bytes: self
.open_path("memory.memsw.usage_in_bytes", false)
.and_then(read_u64_from)
.unwrap_or(0),
max_usage_in_bytes: self
.open_path("memory.memsw.max_usage_in_bytes", false)
.and_then(read_u64_from)
.unwrap_or(0),
}
}
/// Reset the fail counter
pub fn reset_fail_count(&self) -> Result<()> {
self.open_path("memory.failcnt", true).and_then(|mut file| {
file.write_all("0".to_string().as_ref()).map_err(|e| {
Error::with_cause(
WriteFailed("memory.failcnt".to_string(), "0".to_string()),
e,
)
})
})
}
/// Reset the kernel memory fail counter
pub fn reset_kmem_fail_count(&self) -> Result<()> {
// Ignore kmem because there is no kmem in cgroup v2
if self.v2 {
return Ok(());
}
self.open_path("memory.kmem.failcnt", true)
.and_then(|mut file| {
file.write_all("0".to_string().as_ref()).map_err(|e| {
Error::with_cause(
WriteFailed("memory.kmem.failcnt".to_string(), "0".to_string()),
e,
)
})
})
}
/// Reset the TCP related fail counter
pub fn reset_tcp_fail_count(&self) -> Result<()> {
// Ignore kmem because there is no kmem in cgroup v2
if self.v2 {
return Ok(());
}
self.open_path("memory.kmem.tcp.failcnt", true)
.and_then(|mut file| {
file.write_all("0".to_string().as_ref()).map_err(|e| {
Error::with_cause(
WriteFailed("memory.kmem.tcp.failcnt".to_string(), "0".to_string()),
e,
)
})
})
}
/// Reset the memory+swap fail counter
pub fn reset_memswap_fail_count(&self) -> Result<()> {
self.open_path("memory.memsw.failcnt", true)
.and_then(|mut file| {
file.write_all("0".to_string().as_ref()).map_err(|e| {
Error::with_cause(
WriteFailed("memory.memsw.failcnt".to_string(), "0".to_string()),
e,
)
})
})
}
/// Reset the max memory usage recorded
pub fn reset_max_usage(&self) -> Result<()> {
self.open_path("memory.max_usage_in_bytes", true)
.and_then(|mut file| {
file.write_all("0".to_string().as_ref()).map_err(|e| {
Error::with_cause(
WriteFailed("memory.max_usage_in_bytes".to_string(), "0".to_string()),
e,
)
})
})
}
/// Set the memory usage limit of the control group, in bytes.
pub fn set_limit(&self, limit: i64) -> Result<()> {
let mut file_name = "memory.limit_in_bytes";
let mut limit_str = limit.to_string();
if self.v2 {
file_name = "memory.max";
if limit == -1 {
limit_str = "max".to_string();
}
}
self.open_path(file_name, true).and_then(|mut file| {
file.write_all(limit_str.as_ref())
.map_err(|e| Error::with_cause(WriteFailed(file_name.to_string(), limit_str), e))
})
}
/// Set the kernel memory limit of the control group, in bytes.
pub fn set_kmem_limit(&self, limit: i64) -> Result<()> {
// Ignore kmem because there is no kmem in cgroup v2
if self.v2 {
return Ok(());
}
self.open_path("memory.kmem.limit_in_bytes", true)
.and_then(|mut file| {
let r = file.write_all(limit.to_string().as_ref());
match r {
Ok(()) => Ok(()),
Err(ref e) if e.raw_os_error() == Some(libc::EOPNOTSUPP) => {
warn!("memory.kmem.limit_in_bytes is unsupported by the kernel");
Ok(())
}
Err(e) => Err(Error::with_cause(
WriteFailed("memory.kmem.limit_in_bytes".to_string(), limit.to_string()),
e,
)),
}
})
}
/// Set the memory+swap limit of the control group, in bytes.
pub fn set_memswap_limit(&self, limit: i64) -> Result<()> {
let mut file_name = "memory.memsw.limit_in_bytes";
let mut limit_str = limit.to_string();
if self.v2 {
file_name = "memory.swap.max";
if limit == -1 {
limit_str = "max".to_string();
}
}
self.open_path(file_name, true).and_then(|mut file| {
file.write_all(limit_str.as_ref())
.map_err(|e| Error::with_cause(WriteFailed(file_name.to_string(), limit_str), e))
})
}
/// Set how much kernel memory can be used for TCP-related buffers by the control group.
pub fn set_tcp_limit(&self, limit: i64) -> Result<()> {
// Ignore kmem because there is no kmem in cgroup v2
if self.v2 {
return Ok(());
}
self.open_path("memory.kmem.tcp.limit_in_bytes", true)
.and_then(|mut file| {
file.write_all(limit.to_string().as_ref()).map_err(|e| {
Error::with_cause(
WriteFailed(
"memory.kmem.tcp.limit_in_bytes".to_string(),
limit.to_string(),
),
e,
)
})
})
}
/// Set the soft limit of the control group, in bytes.
///
/// This limit is enforced when the system is nearing OOM conditions. Contrast this with the
/// hard limit, which is _always_ enforced.
pub fn set_soft_limit(&self, limit: i64) -> Result<()> {
let mut file_name = "memory.soft_limit_in_bytes";
if self.v2 {
file_name = "memory.low"
}
self.open_path(file_name, true).and_then(|mut file| {
file.write_all(limit.to_string().as_ref()).map_err(|e| {
Error::with_cause(WriteFailed(file_name.to_string(), limit.to_string()), e)
})
})
}
/// Set how likely the kernel is to swap out parts of the address space used by the control
/// group.
///
/// Note that a value of zero does not imply that the process will not be swapped out.
pub fn set_swappiness(&self, swp: u64) -> Result<()> {
let mut file_name = "memory.swappiness";
if self.v2 {
file_name = "memory.swap.max"
}
self.open_path(file_name, true).and_then(|mut file| {
file.write_all(swp.to_string().as_ref()).map_err(|e| {
Error::with_cause(WriteFailed(file_name.to_string(), swp.to_string()), e)
})
})
}
pub fn disable_oom_killer(&self) -> Result<()> {
self.open_path("memory.oom_control", true)
.and_then(|mut file| {
file.write_all("1".to_string().as_ref()).map_err(|e| {
Error::with_cause(
WriteFailed("memory.oom_control".to_string(), "1".to_string()),
e,
)
})
})
}
pub fn register_oom_event(&self, key: &str) -> Result<Receiver<String>> {
if self.v2 {
events::notify_on_oom_v2(key, self.get_path())
} else {
events::notify_on_oom_v1(key, self.get_path())
}
}
}
impl ControllIdentifier for MemController {
fn controller_type() -> Controllers {
Controllers::Mem
}
}
impl CustomizedAttribute for MemController {}
impl<'a> From<&'a Subsystem> for &'a MemController {
fn from(sub: &'a Subsystem) -> &'a MemController {
unsafe {
match sub {
Subsystem::Mem(c) => c,
_ => {
assert_eq!(1, 0);
let v = std::mem::MaybeUninit::uninit();
v.assume_init()
}
}
}