forked from NOAA-EMC/HYCOM-src
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrcupd.F90
1158 lines (1151 loc) · 39.9 KB
/
trcupd.F90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#if defined(ROW_LAND)
#define SEA_P .true.
#define SEA_U .true.
#define SEA_V .true.
#elif defined(ROW_ALLSEA)
#define SEA_P allip(j).or.ip(i,j).ne.0
#define SEA_U alliu(j).or.iu(i,j).ne.0
#define SEA_V alliv(j).or.iv(i,j).ne.0
#else
#define SEA_P ip(i,j).ne.0
#define SEA_U iu(i,j).ne.0
#define SEA_V iv(i,j).ne.0
#endif
subroutine initrc(mnth)
use mod_xc ! HYCOM communication interface
use mod_cb_arrays ! HYCOM saved arrays
use mod_pipe ! HYCOM debugging interface
implicit none
!
integer mnth
!
! --- --------------------------
! --- initializatize all tracers
! --- --------------------------
!
logical lpipe_initrc
parameter (lpipe_initrc=.false.)
!
character ptxt*12,cformat*99
integer i,ibio,nbio,j,k,ktr
real bio_n,bio_p,zk
real pwij(kk+1),trwij(kk,ntracr), &
prij(kk+1),trcij(kk,ntracr)
real chl,swfrac(kdm+1)
!
if (ntracr.eq.0) then
return ! no tracer
endif
!
! --- expand trcflg to allow for number of biology fields.
!
nbio = 0
ibio = 0
do ktr= 1,ntracr+1
if (ktr.ne.ntracr+1 .and. &
trcflg(min(ktr,ntracr)).eq.9) then
if (ibio.eq.0) then !start biology
ibio = ktr
endif
elseif (ibio.ne.0) then !end biology
nbio = ktr-ibio
if (nbio.eq.3) then
! --- Franks NPZ.
trcflg(ibio) = 903
trcflg(ibio+1) = -903
trcflg(ibio+2) = -903
ibio = 0
elseif (nbio.eq.3) then
! --- Two Franks NPZ.
trcflg(ibio) = 903
trcflg(ibio+1) = -903
trcflg(ibio+2) = -903
trcflg(ibio+3) = 903
trcflg(ibio+4) = -903
trcflg(ibio+5) = -903
ibio = 0
elseif (nbio.eq.4) then
! --- Lima/Idrisi NPZD.
trcflg(ibio) = 904
trcflg(ibio+1) = -904
trcflg(ibio+2) = -904
trcflg(ibio+3) = -904
ibio = 0
elseif (nbio.eq.7) then
! --- Lima/Idrisi NPZD and Franks NPZ.
trcflg(ibio) = 904
trcflg(ibio+1) = -904
trcflg(ibio+2) = -904
trcflg(ibio+3) = -904
trcflg(ibio+4) = 903
trcflg(ibio+5) = -903
trcflg(ibio+6) = -903
ibio = 0
elseif (nbio.eq.8) then
! --- Two Lima/Idrisi NPZD.
trcflg(ibio) = 904
trcflg(ibio+1) = -904
trcflg(ibio+2) = -904
trcflg(ibio+3) = -904
trcflg(ibio+4) = 904
trcflg(ibio+5) = -904
trcflg(ibio+6) = -904
trcflg(ibio+7) = -904
ibio = 0
elseif (nbio.eq.9) then
! --- Chai 9-component.
! trcflg(ibio) = 909
! trcflg(ibio+1) = -909
! trcflg(ibio+2) = -909
! trcflg(ibio+3) = -909
! trcflg(ibio+4) = -909
! trcflg(ibio+5) = -909
! trcflg(ibio+6) = -909
! trcflg(ibio+7) = -909
! trcflg(ibio+8) = -909
! ibio = 0
! --- not yet implemented
if (mnproc.eq.1) then
write(lp,'(/ 3a /)') &
'error - trcflg=9 (standard biology) configured', &
' with 9 consecutive tracers, but Chai scheme is', &
' not yet implemented'
call flush(lp)
endif !1st tile
call xcstop('(trcini)')
stop '(trcini)'
else
! --- unknown standard biology.
if (mnproc.eq.1) then
write(lp,'(/ 2a,i3 /)') &
'error - trcflg=9 (standard biology) expects', &
' 3/4/6/7/8 consecutive tracers but have',nbio
! & ' 3/4/6/7/8/9 consecutive tracers but have',nbio
call flush(lp)
endif !1st tile
call xcstop('(trcini)')
stop '(trcini)'
endif
endif
enddo
!
if (mnproc.eq.1) then
write(lp,*)
do k= 1,ntracr
write(lp,'(a,i3,i6)') 'initrc: k,trcflg =',k,trcflg(k)
enddo
write(lp,*)
endif !1st tile
!
if (nbio.gt.0) then
!
! --- input bio-tracer parameters.
! --- note that multiple sets of bio-tracers are allowed,
! --- each is read from tracer.input in tracer order.
!
open(unit=uoff+99,file=trim(flnminp)//'tracer.input')
do ktr= 1,ntracr
if (trcflg(ktr).eq.903) then
! --- NPZ
call trcupd_903(1,2, -ktr)
elseif (trcflg(ktr).eq.904) then
! --- NPZD
call trcupd_904(1,2, -ktr)
! elseif (trcflg(ktr).eq.909) then
! --- Chai 9-component.
! call trcupd_909(1,2, -ktr)
endif
enddo
close(unit=uoff+99)
endif
!
if (trcrin) then
return ! tracer from restart
endif
!
if (iniflg.eq.2) then ! use climatology
call rdrlax(mnth,1)
!$OMP PARALLEL DO PRIVATE(j,i,k,ktr,pwij,trwij,prij,trcij) &
!$OMP SCHEDULE(STATIC,jblk)
do j=1,jj
do i=1,ii
if (SEA_P) then
prij(1)=0.0
do k=1,kk
prij(k+1)=prij(k)+dp(i,j,k,1)
pwij(k) =pwall(i,j,k,1)
do ktr= 1,ntracr
trwij(k,ktr)=trwall(i,j,k,1,ktr)
enddo !ktr
enddo !k
pwij(kk+1)=prij(kk+1)
! call plctrc(trwij,pwij,kk,ntracr,
! & trcij,prij,kk )
call plmtrc(trwij,pwij,kk,ntracr, &
trcij,prij,kk )
do k=1,kk
do ktr= 1,ntracr
tracer(i,j,k,1,ktr)=trcij(k,ktr)
tracer(i,j,k,2,ktr)=trcij(k,ktr)
enddo !ktr
enddo !k
endif !ip
enddo !i
enddo !j
!$OMP END PARALLEL DO
else ! analytic inititalization
!$OMP PARALLEL DO PRIVATE(j,i,k,ktr,prij,chl,swfrac,zk,bio_n,bio_p) &
!$OMP SCHEDULE(STATIC,jblk)
do j=1,jj
do i=1,ii
if (SEA_P) then
prij(1)=0.0
do k=1,kk
prij(k+1)=prij(k)+dp(i,j,k,1)
enddo !k
do ktr= 1,ntracr
if (trcflg(ktr).eq.1) then !need the euphotic zone
if (jerlv0.le.0) then
chl = akpar(i,j,lk0)*wk0+akpar(i,j,lk1)*wk1 &
+akpar(i,j,lk2)*wk2+akpar(i,j,lk3)*wk3
endif
call swfrac_ij(chl,prij,kk+1,qonem, & !oneta might not be available
jerlov(i,j),swfrac)
exit !only calculate swfrac once
endif !trcflg==1
enddo !ktr
do k=1,kk
do ktr= 1,ntracr
if (trcflg(ktr).eq.0) then !100% in the mixed layer
if (prij(k).le.dpmixl(i,j,1)) then
tracer(i,j,k,1,ktr)=10.0
tracer(i,j,k,2,ktr)=10.0
else
tracer(i,j,k,1,ktr)=0.0
tracer(i,j,k,2,ktr)=0.0
endif
elseif (trcflg(ktr).eq.1) then !20 below euphotic zone
if (swfrac(k).gt.0.01) then
tracer(i,j,k,1,ktr)=0.0
tracer(i,j,k,2,ktr)=0.0
else
tracer(i,j,k,1,ktr)=20.0 ! mg/m^3
tracer(i,j,k,2,ktr)=20.0 ! mg/m^3
endif
elseif (trcflg(ktr).eq.2) then !temperature
tracer(i,j,k,1,ktr)=temp(i,j,k,1)
tracer(i,j,k,2,ktr)=temp(i,j,k,1)
elseif (trcflg(ktr).eq.3) then !fully passive
tracer(i,j,k,1,ktr)=0.0 !should never get here
tracer(i,j,k,2,ktr)=0.0 !should never get here
elseif (trcflg(ktr).eq.904 .or. &
trcflg(ktr).eq.903 ) then !NPZD or NPZ
zk = 0.5*(prij(k+1)+prij(k))*qonem
if (zk.le.300.0) then
! 0.1 at 300m, 1.0 at 100m, 2.025 at 0m
bio_p = 0.1 + (300.0-zk)**2 * (0.9/200.0**2)
elseif (zk.le.900.0) then
! 0.1 at 300m, 0.0 at 900m
bio_p = (900.0-zk) * 0.1/600.0
else
bio_p = 0.0
endif
if (temp(i,j,k,1).lt. 6.0) then
bio_n = 37.0
elseif (temp(i,j,k,1).gt.27.0) then
bio_n = 0.0
else
! bio_n = (27.0-temp(i,j,k,1)) * 37.0/21.0
bio_n = 39.3116-1.335*temp(i,j,k,1)
endif
tracer(i,j,k,1,ktr )=bio_n !N
tracer(i,j,k,2,ktr )=bio_n
tracer(i,j,k,1,ktr+1)=bio_p !P
tracer(i,j,k,2,ktr+1)=bio_p
tracer(i,j,k,1,ktr+2)=bio_p !Z=P
tracer(i,j,k,2,ktr+2)=bio_p
if (trcflg(ktr).eq.904) then
tracer(i,j,k,1,ktr+3)=bio_p + 1.0 !D=P+1
tracer(i,j,k,2,ktr+3)=bio_p + 1.0
endif
endif !trcflg
enddo !ktr
enddo !k
endif !ip
enddo !i
enddo !j
!$OMP END PARALLEL DO
endif !iniflg.eq.2:else
!
if (lpipe .and. lpipe_initrc) then
do ktr= 1,ntracr
do k= 1,kk
write (ptxt,'(a4,i2.2,a3,i3)') 'trc.',ktr,' k=',k
call pipe_compare_sym1(tracer(1-nbdy,1-nbdy,k,1,ktr), &
ip,ptxt)
enddo !k
enddo !ktr
endif !lpipe.and.lpipe_initrc
!
if (itest.gt.0 .and. jtest.gt.0) then
prij(1)=0.0
do k=1,kk
prij(k+1)=prij(k)+dp(itest,jtest,k,1)
enddo !k
write(cformat,'(a,i2,a,i2,a)') &
'(i9,2i5,a,',ntracr, &
'a / (23x,i3,2f8.2,', ntracr,'f8.4))'
write (lp,cformat) &
nstep,i0+itest,j0+jtest, &
' istate: thkns dpth', &
(' tracer',ktr=1,ntracr), &
(k, &
dp(itest,jtest,k,1)*qonem, &
(prij(k+1)+prij(k))*0.5*qonem, &
(tracer(itest,jtest,k,1,ktr),ktr=1,ntracr), &
k=1,kk)
write(lp,'(23x,a,8x,f8.2)') 'bot',depths(itest,jtest)
endif !test tile
call xcsync(flush_lp)
!
return
end
subroutine trcupd(m,n)
use mod_xc ! HYCOM communication interface
use mod_cb_arrays ! HYCOM saved arrays
implicit none
!
integer m,n
!
! --- -----------------------------------------------------------
! --- tracer-specific operations (side-wall relaxation in thermf)
! --- -----------------------------------------------------------
!
integer i,j,k,ktr
real chl,pij(kdm+1),swfrac(kdm+1),q
!
do ktr= 1,ntracr
if (trcflg(ktr).eq.0) then
if (trcrlx) then
! --- tracer always trwall, when non-zero, at surface
!$OMP PARALLEL DO PRIVATE(j,k,i,q) &
!$OMP SCHEDULE(STATIC,jblk)
do j=1,jj
do i=1,ii
if (SEA_P) then
! --- constant in time trwall remains exactly constant
q = trwall(i,j,1,lc0,ktr) &
+(trwall(i,j,1,lc1,ktr)-trwall(i,j,1,lc0,ktr))*wc1 &
+(trwall(i,j,1,lc2,ktr)-trwall(i,j,1,lc0,ktr))*wc2 &
+(trwall(i,j,1,lc3,ktr)-trwall(i,j,1,lc0,ktr))*wc3
if (q.gt.0.0) then
tracer(i,j,1,n,ktr) = q
endif
endif !ip
enddo !i
enddo !j
!$OMP END PARALLEL DO
elseif (.not. trcrlx) then
! --- tracer always 10.0 at surface
!$OMP PARALLEL DO PRIVATE(j,k,i) &
!$OMP SCHEDULE(STATIC,jblk)
do j=1,jj
do i=1,ii
if (SEA_P) then
tracer(i,j,1,n,ktr) = 10.0
endif !ip
enddo !i
enddo !j
!$OMP END PARALLEL DO
endif !trcrlx:else
elseif (trcflg(ktr).eq.1) then
! --- psudo-silicate, half-life of 30 days in euphotic zone
q = 1.0-delt1/(30.0*86400.0)
!$OMP PARALLEL DO PRIVATE(j,k,i,chl,pij,swfrac) &
!$OMP SCHEDULE(STATIC,jblk)
do j=1,jj
do i=1,ii
if (SEA_P) then
pij(1)=0.0
do k=1,kk
pij(k+1) = pij(k)+dp(i,j,k,n)
enddo !k
if (jerlv0.le.0) then
chl = akpar(i,j,lk0)*wk0+akpar(i,j,lk1)*wk1 &
+akpar(i,j,lk2)*wk2+akpar(i,j,lk3)*wk3
endif
call swfrac_ij(chl,pij,kk+1,qonem*oneta(i,j,n), &
jerlov(i,j),swfrac)
do k=1,kk
if (0.5*(swfrac(k)+swfrac(k+1)).gt.0.01) then
tracer(i,j,k,n,ktr) = q*tracer(i,j,k,n,ktr)
else
exit !too deep
endif
enddo !k
endif !ip
enddo !i
enddo !j
!$OMP END PARALLEL DO
elseif (trcflg(ktr).eq.2) then
! --- temperature-like (do nothing, heat flux forcing in mixed layer)
elseif (trcflg(ktr).eq.3) then
! --- fully passive (do nothing)
elseif (trcflg(ktr).eq.903) then
! --- NPZ
call trcupd_903(m,n, ktr)
elseif (trcflg(ktr).eq.904) then
! --- NPZD
call trcupd_904(m,n, ktr)
! elseif (trcflg(ktr).eq.909) then
! --- Chai 9-component.
! call trcupd_909(m,n, ktr)
endif
enddo !ktr
return
end subroutine trcupd
subroutine trcupd_903(m,n, ibio)
use mod_xc ! HYCOM communication interface
use mod_cb_arrays ! HYCOM saved arrays
implicit none
!
integer m,n,ibio
!
! --- -------------------------------------------------
! --- tracer-specific operations for Franks NPZ biology
! --- -------------------------------------------------
!
real, save, dimension(mxtrcr) :: &
bup, & ! maximum growth rate of phytoplankton (1/d).
bgz, & ! maximum grazing rate of zooplankton (1/d).
bdp, & ! senescence (death) rate of phytoplankton (1/d).
bdz, & ! death rate of zooplankton (1/d).
buk, & ! = half-saturation coefficient for phytoplankton (mg/m^3)
asim, & ! assimilation efficiency of zooplankton.
glam ! Ivlev parameter for grazing efficiency of zooplankton.
!
integer i,j,k
real bm_n,bm_p,bm_z,bn_n,bn_p,bn_z,bu_n,bu_p,bu_z, &
uptake,grazin,pdeath,zdeath, &
chl,par,pij(kdm+1),swfrac(kdm+1)
!
if (ibio.lt.0) then !initialize only
!
! --- read from tracer_NN.input:
! --- 'biotyp' = type (90X=std.bio,X=3,4,9) must be 903
! --- 'bup ' = maximum growth rate of phytoplankton (1/d).
! --- 'bgz ' = maximum grazing rate of zooplankton (1/d).
! --- 'bdp ' = senescence (death) rate of phytoplankton (1/d).
! --- 'bdz ' = death rate of zooplankton (1/d).
! --- 'buk ' = half-saturation coefficient for phytoplankton (mg/m^3)
! --- 'asim ' = assimilation efficiency of zooplankton.
! --- 'glam ' = Ivlev parameter for grazing efficiency of zooplankton.
!
i = -ibio
if (mnproc.eq.1) then
write(lp,'(/ a,i3,a,i3,a)') &
'Franks NPZ parameters for tracers',i,' to',i+2,':'
endif !1st tile
!
call blkini(k, 'biotyp')
if (k.ne.903) then
if (mnproc.eq.1) then
write(lp,'(/ a /)') &
'error - biotyp must be 903'
call flush(lp)
endif !1st tile
call xcstop('(trcini)')
stop '(trcini)'
endif !biotyp.ne.903
!
call blkinr(bup( i), 'bup ','(a6," =",f10.4," 1/d")')
call blkinr(bgz( i), 'bgz ','(a6," =",f10.4," 1/d")')
call blkinr(bdp( i), 'bdp ','(a6," =",f10.4," 1/d")')
call blkinr(bdz( i), 'bdz ','(a6," =",f10.4," 1/d")')
call blkinr(buk( i), 'buk ','(a6," =",f10.4," mg/m^3")')
call blkinr(asim( i), 'asim ','(a6," =",f10.4," ")')
call blkinr(glam( i), 'glam ','(a6," =",f10.4," ")')
!
if (mnproc.eq.1) then
write(lp,*)
endif !1st tile
return
endif !ibio.lt.0
!
! --- leapfrog time step.
!
!$OMP PARALLEL DO PRIVATE(j,i,k,chl,pij,par,swfrac, &
!$OMP bm_n,bm_p,bm_z,bn_n,bn_p,bn_z, &
!$OMP bu_n,bu_p,bu_z, &
!$OMP uptake,grazin,pdeath,zdeath) &
!$OMP SCHEDULE(STATIC,jblk)
do j=1,jj
do i=1,ii
if (SEA_P) then
pij(1)=0.0
do k=1,kk
pij(k+1) = pij(k)+dp(i,j,k,n)
enddo !k
if (jerlv0.le.0) then
chl = akpar(i,j,lk0)*wk0+akpar(i,j,lk1)*wk1 &
+akpar(i,j,lk2)*wk2+akpar(i,j,lk3)*wk3
endif
call swfrac_ij(chl,pij,kk+1,qonem*oneta(i,j,n), &
jerlov(i,j),swfrac)
do k=1,kk
par = 0.5*(swfrac(k)+swfrac(k+1))
!
bm_n = tracer(i,j,k,m,ibio)
bm_p = tracer(i,j,k,m,ibio+1)
bm_z = tracer(i,j,k,m,ibio+2)
bn_n = tracer(i,j,k,n,ibio)
bn_p = tracer(i,j,k,n,ibio+1)
bn_z = tracer(i,j,k,n,ibio+2)
!
uptake = bup(ibio)*bm_p*bm_n*par/(buk(ibio)+bm_n)
grazin = bgz(ibio)*bm_z*(1.0-exp(-glam(ibio)*bm_p))
pdeath = bdp(ibio)*bm_p
zdeath = bdz(ibio)*bm_z
! limit negative terms to 10% of total per single time step
grazin = min(grazin,bn_p*0.2*86400.0/delt1)
uptake = min(uptake,bn_n*0.2*86400.0/delt1)
!
bu_p = -grazin +uptake-pdeath
bu_z = asim(ibio) *grazin-zdeath
bu_n = (1.0-asim(ibio))*grazin+zdeath-uptake+pdeath
!
tracer(i,j,k,n,ibio) = bn_n + delt1/86400.0 * bu_n
tracer(i,j,k,n,ibio+1) = bn_p + delt1/86400.0 * bu_p
tracer(i,j,k,n,ibio+2) = bn_z + delt1/86400.0 * bu_z
!
! --- fields must be non-negative
! --- note: only round-off should make a field negative
!
if (tracer(i,j,k,n,ibio+1).lt.0.0) then !PtoN
tracer(i,j,k,n,ibio) = tracer(i,j,k,n,ibio) - &
tracer(i,j,k,n,ibio+1)
tracer(i,j,k,n,ibio+1) = 0.0
endif
if (tracer(i,j,k,n,ibio+2).lt.0.0) then !ZtoN
tracer(i,j,k,n,ibio) = tracer(i,j,k,n,ibio) - &
tracer(i,j,k,n,ibio+2)
tracer(i,j,k,n,ibio+2) = 0.0
endif
if (tracer(i,j,k,n,ibio) .lt.0.0) then !NtoPZ (do last)
tracer(i,j,k,n,ibio+1) = tracer(i,j,k,n,ibio+1) - &
tracer(i,j,k,n,ibio)*0.5
tracer(i,j,k,n,ibio+2) = tracer(i,j,k,n,ibio+2) - &
tracer(i,j,k,n,ibio)*0.5
tracer(i,j,k,n,ibio) = 0.0
endif
enddo !k
endif !ip
enddo !i
enddo !j
!$OMP END PARALLEL DO
return
end subroutine trcupd_903
subroutine trcupd_904(m,n, ibio)
use mod_xc ! HYCOM communication interface
use mod_cb_arrays ! HYCOM saved arrays
implicit none
!
integer m,n,ibio
!
! --- -------------------------------------------------------
! --- tracer-specific operations for Lima/Idrisi NPZD biology
! --- -------------------------------------------------------
!
real, save, dimension(mxtrcr) :: &
pp, & ! zoopl: preference term for phytoplankton
pz, & ! zoopl: preference term for zooplankton
pd, & ! zoopl: preference term for detritus
aa, & ! zoopl: assimilation efficiency
am, & ! zoopl: metabolic efficiency
fkz, & ! zoopl: half-saturation coefficient (mg/m^3)
gmax, & ! zoopl: maximum growth rate (1/day)
zmor ! zoopl: mortality (1/day)
!
real, save, dimension(mxtrcr) :: &
! ik, & ! phyto: light absorption efficiency scalar (einst/m^2/h)
fkp, & ! phyto: half-saturation coefficient (mg/m^3)
pmax, & ! phyto: maximum growth rate (1/day)
psen ! phyto: senescence (1/day)
!
real, save, dimension(mxtrcr) :: &
remn ! detri: remineralization (1/day)
!
integer, save, dimension(mxtrcr) :: &
spcflg ! tmpfn: species type (0=none,1=cold-water,2=warm-water)
!
real, parameter :: & ! temperature function for cold-water species
! thornton and lessem (1978)
theta1 = 16.0, & ! dependence on lower optimum temperature curve
theta2 = 9.0, & ! dependence on higher optimum temperature curve
theta3 = 11.0, & ! maximum temperature (upper tolerance level)
q10l = 2.0, & ! the metabolic q10 for temperature response
xk1 = 0.5, & ! scalar constant
xk2 = 0.98, & ! scalar constant
xk3 = 0.01, & ! scalar constant
xk4 = 0.01 ! scalar constant
!
real, parameter :: & ! temperature function for warm-water species
tmax = 27.0, & ! Tfunc: maximum tolerated temperature
topt = 25.0, & ! Tfunc: optimum temperature
q10w = 2.0 ! Tfunc: the metabolic q10 for temperature response
!
integer i,j,k
real bm_n,bm_p,bm_z,bm_d,bn_n,bn_p,bn_z,bn_d, &
bu_n,bu_p,bu_z,bu_d, &
gamma1,gamma2,xnum,xkatheta,ynum,xkbtheta, &
tijk,tfn,vw,xw,yw,zw, &
pgrw,zgrw,pref,prf2,qprf,ztgx,dofz,pofz,zofz, &
chl,par,pij(kdm+1),swfrac(kdm+1)
!
if (ibio.lt.0) then !initialize only
!
! --- read from tracer.input:
! --- 'biotyp' = type (90X=std.bio,X=3,4,9) must be 904
!
! --- 'pp ' = zoopl: preference term for phytoplankton
! --- 'pz ' = zoopl: preference term for zooplankton
! --- 'pd ' = zoopl: preference term for detritus
! --- 'aa ' = zoopl: assimilation efficiency
! --- 'am ' = zoopl: metabolic efficiency
! --- 'fkz ' = zoopl: half-saturation coefficient (mg/m^3)
! --- 'gmax ' = zoopl: maximum growth rate (1/day)
! --- 'zmor ' = zoopl: mortality (1/day)
!
! --- 'ik ' = phyto: light absorption efficiency scalar (einst/m^2/h)
! --- 'fkp ' = phyto: half-saturation coefficient (mg/m^3)
! --- 'pmax ' = phyto: maximum growth rate (1/day)
! --- 'psen ' = phyto: senescence (1/day)
!
! --- 'remn ' = detri: remineralization (1/day)
!
! --- 'spcflg' = tmpfn: species type (0=none,1=cold-water,2=warm-water)
!
i = -ibio
if (mnproc.eq.1) then
write(lp,'(/ a,i3,a,i3,a)') &
'Lima/Idrisi NPZD parameters for tracers',i,' to',i+3,':'
endif !1st tile
!
call blkini(k, 'biotyp')
if (k.ne.904) then
if (mnproc.eq.1) then
write(lp,'(/ a /)') &
'error - biotyp must be 904'
call flush(lp)
endif !1st tile
call xcstop('(trcini)')
stop '(trcini)'
endif !biotyp.ne.904
!
call blkinr(pp( i), 'pp ','(a6," =",f10.4," ")')
call blkinr(pz( i), 'pz ','(a6," =",f10.4," ")')
call blkinr(pd( i), 'pd ','(a6," =",f10.4," ")')
call blkinr(aa( i), 'aa ','(a6," =",f10.4," ")')
call blkinr(am( i), 'am ','(a6," =",f10.4," ")')
call blkinr(fkz( i), 'fkz ','(a6," =",f10.4," mg/m^3")')
call blkinr(gmax( i), 'gmax ','(a6," =",f10.4," 1/day")')
call blkinr(zmor( i), 'zmor ','(a6," =",f10.4," 1/day")')
!
call blkinr(fkp( i), 'fkp ','(a6," =",f10.4," mg/m^3")')
call blkinr(pmax( i), 'pmax ','(a6," =",f10.4," 1/day")')
call blkinr(psen( i), 'psen ','(a6," =",f10.4," 1/day")')
!
call blkinr(remn( i), 'remn ','(a6," =",f10.4," 1/day")')
!
call blkini(spcflg(i),'spcflg')
!
if (mnproc.eq.1) then
write(lp,*)
endif !1st tile
return
endif !ibio.lt.0
!
! --- leapfrog time step.
!
!$OMP PARALLEL DO PRIVATE(j,i,k,chl,pij,par,swfrac, &
!$OMP bm_n,bm_p,bm_z,bm_d,bn_n,bn_p,bn_z,bn_d, &
!$OMP bu_n,bu_p,bu_z,bu_d, &
!$OMP gamma1,gamma2,xnum,xkatheta,ynum,xkbtheta, &
!$OMP tijk,tfn,vw,xw,yw,zw, &
!$OMP pgrw,zgrw,pref,prf2,qprf,ztgx,dofz,pofz,zofz) &
!$OMP SCHEDULE(STATIC,jblk)
do j=1,jj
do i=1,ii
if (SEA_P) then
pij(1)=0.0
do k=1,kk
pij(k+1) = pij(k)+dp(i,j,k,n)
enddo !k
if (jerlv0.le.0) then
chl = akpar(i,j,lk0)*wk0+akpar(i,j,lk1)*wk1 &
+akpar(i,j,lk2)*wk2+akpar(i,j,lk3)*wk3
endif
call swfrac_ij(chl,pij,kk+1,qonem*oneta(i,j,n), &
jerlov(i,j),swfrac)
do k=1,kk
par = 0.5*(swfrac(k)+swfrac(k+1))
!
bm_n = tracer(i,j,k,m,ibio)
bm_p = tracer(i,j,k,m,ibio+1)
bm_z = tracer(i,j,k,m,ibio+2)
bm_d = tracer(i,j,k,m,ibio+3)
bn_n = tracer(i,j,k,n,ibio)
bn_p = tracer(i,j,k,n,ibio+1)
bn_z = tracer(i,j,k,n,ibio+2)
bn_d = tracer(i,j,k,n,ibio+3)
!
if (spcflg(ibio).eq.1) then
! --- cold-water species temperature dependance
tijk = temp(i,j,k,n)
gamma1 = 1.0/(theta2-q10l) * &
log((xk2*(1.0-xk1))/(xk1*(1.0-xk2)))
gamma2 = 1.0/(theta1-theta3) * &
log((xk2*(1.0-xk3))/(xk4*(1.0-xk2)))
xnum = exp(gamma1*(tijk-q10l))
xkatheta = (xk1*xnum)/(1.0+xk1*(xnum-1.0))
ynum = exp(gamma2*(theta1-tijk))
xkbtheta = (xk4*ynum)/(1.0+xk3*(ynum-1.0))
tfn = xkatheta*xkbtheta
elseif (spcflg(ibio).eq.2) then
! --- warm-water species temperature dependance
tijk = temp(i,j,k,n)
if (tijk.le.tmax) then
vw = (tmax-tijk)/(tmax-topt)
yw = log(q10w)*(tmax-topt+2.0)
zw = log(q10w)*(tmax-topt)
xw = (zw**2 * (1.0+sqrt(1.0+40.0/yw))**2)/400.0
tfn = vw**xw * exp(xw*(1.0-vw))
else
tfn=0.0
endif
else
! --- no temperature dependance
tfn=1.0
endif !spcflg
!
pref = pp(ibio)*bm_p + &
pd(ibio)*bm_d + &
pz(ibio)*bm_z
prf2 = pp(ibio)*bm_p**2 + &
pd(ibio)*bm_d**2 + &
pz(ibio)*bm_z**2
qprf = 1.0/(fkz(ibio)*pref + prf2 + epsil) !epsil prevents 1/0
ztgx = bm_z*tfn*gmax(ibio)
!
pgrw = bm_p*tfn*pmax(ibio)*bm_n*par/(fkp(ibio)+bm_n)
zgrw = ztgx*(prf2 *qprf)*aa(ibio)*am(ibio)
pofz = ztgx*(pp(ibio)*bm_p**2*qprf)
zofz = ztgx*(pz(ibio)*bm_z**2*qprf)
dofz = ztgx*(pd(ibio)*bm_d**2*qprf)
!
! limit negative terms to 10% of total per single time step
pgrw = min(pgrw,bn_n*0.2*86400.0/delt1)
zgrw = min(zgrw,bn_n*0.2*86400.0/delt1)
pofz = min(pofz,bn_p*0.2*86400.0/delt1)
zofz = min(zofz,bn_z*0.2*86400.0/delt1)
dofz = min(dofz,bn_d*0.2*86400.0/delt1)
!
bu_p = pgrw &
- pofz &
- bm_p*psen(ibio)
bu_z = zgrw &
- zofz &
- bm_z*zmor(ibio)
bu_d = bm_p*psen(ibio) &
+ bm_z*zmor(ibio) &
+ (pofz+zofz+dofz)*(1.0-aa(ibio)) &
- dofz &
- bm_d*remn(ibio)
bu_n = bm_d*remn(ibio) &
+ (pofz+zofz+dofz)* aa(ibio) &
- zgrw &
- pgrw
!
tracer(i,j,k,n,ibio) = bn_n + delt1/86400.0 * bu_n
tracer(i,j,k,n,ibio+1) = bn_p + delt1/86400.0 * bu_p
tracer(i,j,k,n,ibio+2) = bn_z + delt1/86400.0 * bu_z
tracer(i,j,k,n,ibio+3) = bn_d + delt1/86400.0 * bu_d
!
! --- fields must be non-negative
! --- note: only round-off should make a field negative
!
if (tracer(i,j,k,n,ibio+1).lt.0.0) then !PtoN
tracer(i,j,k,n,ibio) = tracer(i,j,k,n,ibio) - &
tracer(i,j,k,n,ibio+1)
tracer(i,j,k,n,ibio+1) = 0.0
endif
if (tracer(i,j,k,n,ibio+2).lt.0.0) then !ZtoN
tracer(i,j,k,n,ibio) = tracer(i,j,k,n,ibio) - &
tracer(i,j,k,n,ibio+2)
tracer(i,j,k,n,ibio+2) = 0.0
endif
if (tracer(i,j,k,n,ibio+3).lt.0.0) then !DtoN
tracer(i,j,k,n,ibio) = tracer(i,j,k,n,ibio) - &
tracer(i,j,k,n,ibio+3)
tracer(i,j,k,n,ibio+3) = 0.0
endif
if (tracer(i,j,k,n,ibio) .lt.0.0) then !NtoD (do last)
tracer(i,j,k,n,ibio+3) = tracer(i,j,k,n,ibio+3) - &
tracer(i,j,k,n,ibio)
tracer(i,j,k,n,ibio) = 0.0
endif
enddo
endif !ip
enddo !i
enddo !j
!$OMP END PARALLEL DO
return
end subroutine trcupd_904
subroutine pcmtrc(si,pi,ki,ks, so,po,ko)
implicit none
!
integer ki,ks,ko
real si(ki,ks),pi(ki+1), &
so(ko,ks),po(ko+1)
!
!**********
!*
! 1) remap from one set of vertical cells to another.
! method: piecewise constant across each input cell
! the output is the average of the interpolation
! profile across each output cell.
!
! 2) input arguments:
! si - scalar fields in pi-layer space
! pi - layer interface depths (non-negative m)
! pi( 1) is the surface
! pi(ki+1) is the bathymetry
! ki - 1st dimension of si (number of input layers)
! ks - 2nd dimension of si,so (number of fields)
! po - target interface depths (non-negative m)
! po(k+1) >= po(k)
! ko - 1st dimension of so (number of output layers)
!
! 3) output arguments:
! so - scalar fields in po-layer space
!
! 4) except at data voids, must have:
! pi( 1) == zero (surface)
! pi( l+1) >= pi(l)
! pi(ki+1) == bathymetry
! 0 <= po(k) <= po(k+1)
! output layers completely below the bathymetry inherit values
! from the layer above.
!
! 5) Alan J. Wallcraft, Naval Research Laboratory, Sep. 2002 (Aug. 2005).
!*
!**********
!
real thin
parameter (thin=1.e-6) ! minimum layer thickness (no division by 0.0)
!
integer i,k,l,lf
real q,zb,zt,sok(ks)
!
lf=1
zb=po(1)
do k= 1,ko
zt = zb
zb = po(k+1)
! WRITE(6,*) 'k,zt,zb = ',k,zt,zb
if (zb-zt.lt.thin .or. zt.ge.pi(ki+1)) then
!
! --- thin or bottomed layer, values taken from layer above
!
do i= 1,ks
so(k,i) = so(k-1,i)
enddo !i
else
!
! form layer averages.
!
if (pi(lf).gt.zt) then
WRITE(6,*) 'bad lf = ',lf
stop
endif
do i= 1,ks
sok(i) = 0.0
enddo !i
do l= lf,ki
if (pi(l).gt.zb) then
! WRITE(6,*) 'l,lf= ',l,lf,l-1
lf = l-1
exit
elseif (pi(l).ge.zt .and. pi(l+1).le.zb) then
!
! the input layer is completely inside the output layer
!
q = max(pi(l+1)-pi(l),thin)/(zb-zt)
do i= 1,ks
sok(i) = sok(i) + q*si(l,i)
enddo !i
! WRITE(6,*) 'L,q = ',l,q
else
!
! the input layer is partially inside the output layer
!
q = max(min(pi(l+1),zb)-max(pi(l),zt),thin)/(zb-zt)
do i= 1,ks
sok(i) = sok(i) + q*si(l,i)
enddo !i
! WRITE(6,*) 'l,q = ',l,q
endif
enddo !l
do i= 1,ks
so(k,i) = sok(i)
enddo !i
endif
enddo !k
return
end subroutine pcmtrc
subroutine plmtrc(si,pi,ki,ks, so,po,ko)
implicit none
!
integer ki,ks,ko
real si(ki,ks),pi(ki+1), &
so(ko,ks),po(ko+1),flag
!
!**********
!*
! 1) remap from one set of vertical cells to another.
! method: piecewise linear across each input cell
! the output is the average of the interpolation
! profile across each output cell.
!
! 2) input arguments:
! si - scalar fields in pi-layer space
! pi - layer interface depths (non-negative m)
! pi( 1) is the surface
! pi(ki+1) is the bathymetry
! ki - 1st dimension of si (number of input layers)
! ks - 2nd dimension of si,so (number of fields)
! po - target interface depths (non-negative m)
! po(k+1) >= po(k)
! ko - 1st dimension of so (number of output layers)
! flag - data void (land) marker
!
! 3) output arguments:
! so - scalar fields in po-layer space
!
! 4) except at data voids, must have:
! pi( 1) == zero (surface)
! pi( l+1) >= pi(l)
! pi(ki+1) == bathymetry
! 0 <= po(k) <= po(k+1)
! output layers completely below the bathymetry inherit values
! from the layer above.
!
! 5) Tim Campbell, Mississippi State University, October 2002.
! Alan J. Wallcraft, Naval Research Laboratory, Aug. 2005.
!*
!**********
!
real,parameter :: thin=1.e-6 !minimum layer thickness
!
integer i,k,l,lf
real q,qc,zb,zc,zt,sok(ks)
real sis(ki,ks),pit(ki+1)
real si_min(ks),si_max(ks)
!
! --- inforce minval(si(:,i)) <= minval(so(:,i)) and
! --- maxval(si(:,i)) >= maxval(so(:,i)) for i=1:ks
! --- in particular this inforces non-negativity, e.g. of tracers
! --- only required due to finite precision
!
do i= 1,ks
si_min(i) = minval(si(:,i))
si_max(i) = maxval(si(:,i))
enddo !i
!
! --- compute PLM slopes for input layers
do k=1,ki
pit(k)=max(pi(k+1)-pi(k),thin)
enddo
call plmtrcx(pit,si,sis,ki,ks)
! --- compute output layer averages
lf=1
zb=po(1)
do k= 1,ko
zt = zb
zb = po(k+1)
! WRITE(6,*) 'k,zt,zb = ',k,zt,zb
if (zb-zt.lt.thin .or. zt.ge.pi(ki+1)) then
!
! --- thin or bottomed layer, values taken from layer above
!
do i= 1,ks
so(k,i) = so(k-1,i)
enddo !i
else
!
! form layer averages.
!
if (pi(lf).gt.zt) then
WRITE(6,*) 'bad lf = ',lf
stop
endif
do i= 1,ks
sok(i) = 0.0
enddo !i
do l= lf,ki