forked from Yunfan-Li/Twin-Contrastive-Learning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
boost.py
333 lines (289 loc) · 10.6 KB
/
boost.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
import argparse
import time
import datetime
import misc
import numpy as np
import os
import torch
import torch.backends.cudnn as cudnn
from pathlib import Path
from data import build_dataset
from model import get_resnet, Network
from misc import NativeScalerWithGradNormCount as NativeScaler
from loss import InstanceLossBoost, ClusterLossBoost
from engine import boost_one_epoch, evaluate
import json
def get_args_parser():
parser = argparse.ArgumentParser("TCL", add_help=False)
parser.add_argument(
"--batch_size", default=256, type=int, help="Batch size per GPU"
)
parser.add_argument("--epochs", default=200, type=int)
# Model parameters
parser.add_argument(
"--model",
default="resnet34",
type=str,
metavar="MODEL",
choices=["resnet50", "resnet34", "resnet18"],
help="Name of model to train",
)
parser.add_argument("--feat_dim", default=128, type=int, help="dimension of ICH")
parser.add_argument(
"--ins_temp",
default=0.5,
type=float,
help="temperature of instance-level contrastive loss",
)
parser.add_argument(
"--clu_temp",
default=1.0,
type=float,
help="temperature of cluster-level contrastive loss",
)
# Optimizer parameters
parser.add_argument("--weight_decay", type=float, default=1e-4, help="weight decay")
parser.add_argument(
"--lr",
type=float,
default=1e-4,
metavar="LR",
help="learning rate (absolute lr)",
)
# Dataset parameters
parser.add_argument(
"--data_path", default="./datasets/", type=str, help="dataset path",
)
parser.add_argument(
"--dataset",
default="CIFAR-10",
type=str,
help="dataset",
choices=["CIFAR-10", "CIFAR-100", "ImageNet-10", "ImageNet"],
)
parser.add_argument(
"--nb_cluster", default=10, type=int, help="number of the clusters",
)
parser.add_argument(
"--output_dir",
default="./save/",
help="path where to save, empty for no saving",
)
parser.add_argument(
"--device", default="cuda", help="device to use for training / testing"
)
parser.add_argument("--seed", default=0, type=int)
parser.add_argument(
"--resume",
default="./save/checkpoint-0.pth",
help="resume from checkpoint",
)
parser.add_argument(
"--start_epoch", default=0, type=int, metavar="N", help="start epoch"
)
parser.add_argument("--save_freq", default=20, type=int, help="saving frequency")
parser.add_argument(
"--eval_freq", default=10, type=int, help="evaluation frequency"
)
parser.add_argument("--num_workers", default=10, type=int)
parser.add_argument(
"--pin_mem",
action="store_true",
help="Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.",
)
parser.add_argument(
"--dist_eval",
action="store_true",
default=False,
help="Enabling distributed evaluation (recommended during training for faster monitor",
)
# distributed training parameters
parser.add_argument(
"--world_size", default=1, type=int, help="number of distributed processes"
)
parser.add_argument("--local_rank", default=-1, type=int)
parser.add_argument("--dist_on_itp", action="store_true")
parser.add_argument(
"--dist_url", default="env://", help="url used to set up distributed training"
)
return parser
def main(args):
misc.init_distributed_mode(args)
print("job dir: {}".format(os.path.dirname(os.path.realpath(__file__))))
print("{}".format(args).replace(", ", ",\n"))
device = torch.device(args.device)
# fix the seed for reproducibility
seed = args.seed + misc.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
cudnn.benchmark = True
dataset_train = build_dataset(type="train", args=args)
dataset_pseudo = build_dataset(type="pseudo", args=args)
dataset_val = build_dataset(type="val", args=args)
num_tasks = misc.get_world_size()
global_rank = misc.get_rank()
sampler_train = torch.utils.data.DistributedSampler(
dataset_train, num_replicas=num_tasks, rank=global_rank, shuffle=True
)
sampler_pseudo = torch.utils.data.DistributedSampler(
dataset_pseudo, num_replicas=num_tasks, rank=global_rank, shuffle=True
)
print("Sampler_train = %s" % str(sampler_train))
if args.dist_eval:
if len(dataset_val) % num_tasks != 0:
print(
"Warning: Enabling distributed evaluation with an eval dataset not divisible by process number. "
"This will slightly alter validation results as extra duplicate entries are added to achieve "
"equal num of samples per-process."
)
sampler_val = torch.utils.data.DistributedSampler(
dataset_val, num_replicas=num_tasks, rank=global_rank, shuffle=True
) # shuffle=True to reduce monitor bias
else:
sampler_val = torch.utils.data.SequentialSampler(dataset_val)
if global_rank == 0 and args.output_dir is not None:
os.makedirs(args.output_dir, exist_ok=True)
data_loader_train = torch.utils.data.DataLoader(
dataset_train,
sampler=sampler_train,
batch_size=args.batch_size,
num_workers=args.num_workers,
pin_memory=args.pin_mem,
drop_last=True,
)
data_loader_ps = torch.utils.data.DataLoader(
dataset_pseudo,
sampler=sampler_pseudo,
batch_size=1000,
num_workers=args.num_workers,
pin_memory=args.pin_mem,
drop_last=True,
)
data_loader_val = torch.utils.data.DataLoader(
dataset_val,
sampler=sampler_val,
batch_size=args.batch_size,
num_workers=args.num_workers,
pin_memory=args.pin_mem,
drop_last=False,
)
backbone, hidden_dim = get_resnet(args)
model = Network(backbone, hidden_dim, args.feat_dim, args.nb_cluster)
if args.resume:
checkpoint = torch.load(args.resume, map_location="cpu")
print("Load pre-trained checkpoint from: %s" % args.resume)
checkpoint_model = checkpoint["model"]
# load pre-trained model
msg = model.load_state_dict(checkpoint_model, strict=False)
print(msg)
model.to(device)
metric_logger = misc.MetricLogger(delimiter=" ")
header = "Test:"
# switch to evaluation mode
model.eval()
feat_vector = []
labels_vector = []
for (images, labels, _) in metric_logger.log_every(data_loader_val, 20, header):
images = images.to(device, non_blocking=True)
# compute output
with torch.cuda.amp.autocast():
feat, c = model.forward_zc(images)
c = torch.argmax(c, dim=1)
feat_vector.extend(feat.cpu().detach().numpy())
labels_vector.extend(labels.numpy())
feat_vector = np.array(feat_vector)
labels_vector = np.array(labels_vector)
print(
"Feat shape {}, Label shape {}".format(feat_vector.shape, labels_vector.shape)
)
model_without_ddp = model
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
print("Model = %s" % str(model_without_ddp))
print("number of params (M): %.2f" % (n_parameters / 1.0e6))
eff_batch_size = args.batch_size * misc.get_world_size()
print("base lr: %.3e" % args.lr)
print("effective batch size: %d" % eff_batch_size)
optimizer = torch.optim.Adam(
[
{"params": model.resnet.parameters(), "lr": args.lr,},
{"params": model.instance_projector.parameters(), "lr": args.lr},
{"params": model.cluster_projector.parameters(), "lr": args.lr},
],
lr=args.lr,
weight_decay=args.weight_decay,
)
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
model_without_ddp = model.module
loss_scaler = NativeScaler()
criterion_ins = InstanceLossBoost(
tau=args.ins_temp, distributed=True, alpha=0.99, gamma=0.5
)
criterion_clu = ClusterLossBoost(distributed=True, cluster_num=args.nb_cluster)
misc.load_model(
args=args,
model_without_ddp=model_without_ddp,
optimizer=optimizer,
loss_scaler=loss_scaler,
)
print(f"Start training for {args.epochs} epochs")
pseudo_labels = -torch.ones(dataset_train.__len__(), dtype=torch.long)
start_time = time.time()
max_accuracy = 0.0
for epoch in range(args.start_epoch, args.epochs):
if args.distributed:
data_loader_train.sampler.set_epoch(epoch)
train_stats, pseudo_labels = boost_one_epoch(
model,
criterion_ins,
criterion_clu,
data_loader_train,
optimizer,
device,
epoch,
loss_scaler,
pseudo_labels,
args=args,
)
if args.output_dir and (
epoch % args.save_freq == 0 or epoch + 1 == args.epochs
):
misc.save_model(
args=args,
model=model,
model_without_ddp=model_without_ddp,
optimizer=optimizer,
loss_scaler=loss_scaler,
epoch=epoch,
)
if (
epoch % args.eval_freq == 0
or epoch + 1 == args.epochs
):
test_stats = evaluate(data_loader_val, model, device)
print(
f"Clustering performance on the {len(dataset_val)} test images: NMI={test_stats['nmi']:.2f}%, ACC={test_stats['acc']:.2f}%, ARI={test_stats['ari']:.2f}%"
)
max_accuracy = max(max_accuracy, test_stats["acc"])
print(f"Max accuracy: {max_accuracy:.2f}%")
if epoch == args.start_epoch:
test_stats = {"pred_num": 1000}
log_stats = {
**{f"train_{k}": v for k, v in train_stats.items()},
**{f"test_{k}": v for k, v in test_stats.items()},
"epoch": epoch,
"n_parameters": n_parameters,
}
if args.output_dir and misc.is_main_process():
with open(
os.path.join(args.output_dir, "log.txt"), mode="a", encoding="utf-8"
) as f:
f.write(json.dumps(log_stats) + "\n")
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print("Training time {}".format(total_time_str))
if __name__ == "__main__":
args = get_args_parser()
args = args.parse_args()
if args.output_dir:
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
main(args)