-
Notifications
You must be signed in to change notification settings - Fork 91
/
csv_dataset.py
222 lines (183 loc) · 7.91 KB
/
csv_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
"""``CSVDataset`` loads/saves data from/to a CSV file using an underlying
filesystem (e.g.: local, S3, GCS). It uses pandas to handle the CSV file.
"""
import logging
import warnings
from copy import deepcopy
from io import BytesIO
from pathlib import PurePosixPath
from typing import Any, Dict
import fsspec
import pandas as pd
from kedro.io.core import (
PROTOCOL_DELIMITER,
Version,
get_filepath_str,
get_protocol_and_path,
)
from kedro_datasets import KedroDeprecationWarning
from kedro_datasets._io import AbstractVersionedDataset, DatasetError
logger = logging.getLogger(__name__)
class CSVDataset(AbstractVersionedDataset[pd.DataFrame, pd.DataFrame]):
"""``CSVDataset`` loads/saves data from/to a CSV file using an underlying
filesystem (e.g.: local, S3, GCS). It uses pandas to handle the CSV file.
Example usage for the
`YAML API <https://kedro.readthedocs.io/en/stable/data/\
data_catalog_yaml_examples.html>`_:
.. code-block:: yaml
cars:
type: pandas.CSVDataset
filepath: data/01_raw/company/cars.csv
load_args:
sep: ","
na_values: ["#NA", NA]
save_args:
index: False
date_format: "%Y-%m-%d %H:%M"
decimal: .
motorbikes:
type: pandas.CSVDataset
filepath: s3://your_bucket/data/02_intermediate/company/motorbikes.csv
credentials: dev_s3
Example usage for the
`Python API <https://kedro.readthedocs.io/en/stable/data/\
advanced_data_catalog_usage.html>`_:
.. code-block:: pycon
>>> from kedro_datasets.pandas import CSVDataset
>>> import pandas as pd
>>>
>>> data = pd.DataFrame({"col1": [1, 2], "col2": [4, 5], "col3": [5, 6]})
>>>
>>> dataset = CSVDataset(filepath="test.csv")
>>> dataset.save(data)
>>> reloaded = dataset.load()
>>> assert data.equals(reloaded)
"""
DEFAULT_LOAD_ARGS: Dict[str, Any] = {}
DEFAULT_SAVE_ARGS: Dict[str, Any] = {"index": False}
def __init__( # noqa: PLR0913
self,
filepath: str,
load_args: Dict[str, Any] = None,
save_args: Dict[str, Any] = None,
version: Version = None,
credentials: Dict[str, Any] = None,
fs_args: Dict[str, Any] = None,
metadata: Dict[str, Any] = None,
) -> None:
"""Creates a new instance of ``CSVDataset`` pointing to a concrete CSV file
on a specific filesystem.
Args:
filepath: Filepath in POSIX format to a CSV file prefixed with a protocol like `s3://`.
If prefix is not provided, `file` protocol (local filesystem) will be used.
The prefix should be any protocol supported by ``fsspec``.
Note: `http(s)` doesn't support versioning.
load_args: Pandas options for loading CSV files.
Here you can find all available arguments:
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_csv.html
All defaults are preserved.
save_args: Pandas options for saving CSV files.
Here you can find all available arguments:
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.to_csv.html
All defaults are preserved, but "index", which is set to False.
version: If specified, should be an instance of
``kedro.io.core.Version``. If its ``load`` attribute is
None, the latest version will be loaded. If its ``save``
attribute is None, save version will be autogenerated.
credentials: Credentials required to get access to the underlying filesystem.
E.g. for ``GCSFileSystem`` it should look like `{"token": None}`.
fs_args: Extra arguments to pass into underlying filesystem class constructor
(e.g. `{"project": "my-project"}` for ``GCSFileSystem``).
metadata: Any Any arbitrary metadata.
This is ignored by Kedro, but may be consumed by users or external plugins.
"""
_fs_args = deepcopy(fs_args) or {}
_credentials = deepcopy(credentials) or {}
protocol, path = get_protocol_and_path(filepath, version)
if protocol == "file":
_fs_args.setdefault("auto_mkdir", True)
self._protocol = protocol
self._storage_options = {**_credentials, **_fs_args}
self._fs = fsspec.filesystem(self._protocol, **self._storage_options)
self.metadata = metadata
super().__init__(
filepath=PurePosixPath(path),
version=version,
exists_function=self._fs.exists,
glob_function=self._fs.glob,
)
# Handle default load and save arguments
self._load_args = deepcopy(self.DEFAULT_LOAD_ARGS)
if load_args is not None:
self._load_args.update(load_args)
self._save_args = deepcopy(self.DEFAULT_SAVE_ARGS)
if save_args is not None:
self._save_args.update(save_args)
if "storage_options" in self._save_args or "storage_options" in self._load_args:
logger.warning(
"Dropping 'storage_options' for %s, "
"please specify them under 'fs_args' or 'credentials'.",
self._filepath,
)
self._save_args.pop("storage_options", None)
self._load_args.pop("storage_options", None)
def _describe(self) -> Dict[str, Any]:
return {
"filepath": self._filepath,
"protocol": self._protocol,
"load_args": self._load_args,
"save_args": self._save_args,
"version": self._version,
}
def _load(self) -> pd.DataFrame:
load_path = str(self._get_load_path())
if self._protocol == "file":
# file:// protocol seems to misbehave on Windows
# (<urlopen error file not on local host>),
# so we don't join that back to the filepath;
# storage_options also don't work with local paths
return pd.read_csv(load_path, **self._load_args)
load_path = f"{self._protocol}{PROTOCOL_DELIMITER}{load_path}"
return pd.read_csv(
load_path, storage_options=self._storage_options, **self._load_args
)
def _save(self, data: pd.DataFrame) -> None:
save_path = get_filepath_str(self._get_save_path(), self._protocol)
buf = BytesIO()
data.to_csv(path_or_buf=buf, **self._save_args)
with self._fs.open(save_path, mode="wb") as fs_file:
fs_file.write(buf.getvalue())
self._invalidate_cache()
def _exists(self) -> bool:
try:
load_path = get_filepath_str(self._get_load_path(), self._protocol)
except DatasetError:
return False
return self._fs.exists(load_path)
def _release(self) -> None:
super()._release()
self._invalidate_cache()
def _invalidate_cache(self) -> None:
"""Invalidate underlying filesystem caches."""
filepath = get_filepath_str(self._filepath, self._protocol)
self._fs.invalidate_cache(filepath)
def _preview(self, nrows: int = 40) -> Dict:
# Create a copy so it doesn't contaminate the original dataset
dataset_copy = self._copy()
dataset_copy._load_args["nrows"] = nrows
data = dataset_copy.load()
return data.to_dict(orient="split")
_DEPRECATED_CLASSES = {
"CSVDataSet": CSVDataset,
}
def __getattr__(name):
if name in _DEPRECATED_CLASSES:
alias = _DEPRECATED_CLASSES[name]
warnings.warn(
f"{repr(name)} has been renamed to {repr(alias.__name__)}, "
f"and the alias will be removed in Kedro-Datasets 2.0.0",
KedroDeprecationWarning,
stacklevel=2,
)
return alias
raise AttributeError(f"module {repr(__name__)} has no attribute {repr(name)}")