-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathHighMassClustersEnvironments_StarFormMapper.html
1008 lines (875 loc) · 44.3 KB
/
HighMassClustersEnvironments_StarFormMapper.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>High Mass Star Clusters Formation in different environments</title>
<meta name="viewport"
content="width=device-width, initial-scale=1.0, maximum-scale=1.0, user-scalable=no">
<link rel="stylesheet" href="reveal/css/reveal.css">
<link rel="stylesheet" href="white.css" id="theme">
<link rel="stylesheet" href="reveal/lib/css/zenburn.css">
<link rel="stylesheet" href="custom.css" id="custom-theme">
<script>
document.write('<link rel="stylesheet" href="reveal/css/print/'+(window.location.search.match(/print-pdf/gi) ? 'pdf' : 'paper')+'.css" type="text/css" media="print">');
</script>
<!--[if lt IE 9]>
<script src="reveal/lib/js/html5shiv.js">
</script>
<![endif]-->
</head>
<body>
<!-- Slides! -->
<div class="reveal">
<div class="slides">
<section data-id="9e1f37193271406fc72e974be0a8a3fe">
<div class="sl-block" data-block-type="text" style="width: auto; height: auto;" data-block-id="fa1e26dfdc2f3050895879d1fc1c4f1a">
<div class="sl-block-content" data-placeholder-tag="h1" data-placeholder-text="Title Text" style="z-index: 11;">
<h1 style="font-size:2.2em; word-break: keep-all; hyphens: none;"> Environmental effects in and around forming high-mass clusters</h1>
<p class="footer">Adam Ginsburg</p>
<p class="smaller footer">Assistant Professor, University of Florida, Gainesville</p>
<div class=smaller3>
John Bally, Ashley Barnes, Nate Bastian, Cara Battersby,
Henrik Beuther, Crystal Brogan, Yanett Contreras, Joanna
Corby, Jeremy Darling, Chris De Pree, Roberto Galván-Madrid,
Guido Garay, Jonathan Henshaw, Todd Hunter, J. M. Diederik
Kruijssen, Steven Longmore, Xing Lu, Fanyi Meng, Elisabeth A.C.
Mills, Juergen Ott, Jaime E. Pineda, Álvaro Sánchez-Monge,
Peter Schilke, Anika Schmiedeke, Daniel Walker, David Wilner,
Leonardo Testi, Rowan Smith, Ke Wang, James Dale, Robert
Loughnane, Erik Rosolowsky, Eric Koch, Ciriaco
Goddi, Brett McGuire, Dick Plambeck, Melvyn
Wright</div>
<div class=smaller3> <b>Students:</b>
Justin Otter, Andreas Schwörer
<br>
<div style='font-size:30px'>This presentation can be found at <a href="https://keflavich.github.io/talks/">https://keflavich.github.io/talks/</a>
or, until September 22, 2019, at <a href="http://small.cat/cap">http://small.cat/cap</a>
</div>
</div>
</div>
</section>
<section>
<h2> Caveat </h2>
I gave this talk as the very first one of the StarFormMapper 3 conference. Over the course of the conference, I learned that some of the results I thought
were accepted and uncontroversial are, in fact, neither. There is still active discussion about whether the mass at a given size scale evolves during
cluster formation, i.e., the static collapse model is still possibly viable.
</section>
<!--
<section>
<h2> Takeaways: </h2>
<ol>
<li> More stars form in clusters in higher-density environments
</ol>
</section>
-->
<section style='font-size:85%'>
<h6 style='font-size:44px'> How do bound clusters form? </h6>
<ol>
<li class=fragment> The mass is <b>pre-assembled</b> in "starless" clumps, then collapses
<ul>
<li>Combined with gas expulsion, favored by Banerjee & Kroupa
(<a href="http://adsabs.harvard.edu/abs/2014ApJ...787..158B">2014</a>,
<a href="http://adsabs.harvard.edu/abs/2015MNRAS.447..728B">2015</a>,
<a href="http://adsabs.harvard.edu/abs/2017A%26A...597A..28B">2017</a>,
<a href="http://adsabs.harvard.edu/abs/2018ASSL..424..143B">2018</a>)
</li>
<li>
Requires protoclusters to start more compact, since they expand with expulsion
</li>
</ul>
</li>
<li class=fragment> The mass is assembled as stars form: <div>there is <b>no starless phase</b>,
gas comes from larger scales </div>
<ul><li>Better supported by observational timescale arguments</li>
<li>"Conveyor Belt" of <a href="http://esoads.eso.org/abs/2014prpl.conf..291L">Longmore+ 2014</a>
</ul>
</li>
<li class=fragment> Stars form in <b>substructures</b>, then <b>merge</b> into clusters
<div class=small>(e.g., Fujii+ <a href="http://adsabs.harvard.edu/abs/2012ApJ...753...85F">2012</a>)</div>
<ul>
<li> However, <a href="https://ui.adsabs.harvard.edu/abs/2019ApJ...870...32K">Kuhn+ 2019</a>
used GAIA to show young clusters are expanding and subclusters are moving away
from each other
</li>
</ol>
<!--<div style='font-size: 22px'>
Minor quibble - Many papers on this topic have abstracts that say: <div>"We show
that clusters <i>can</i> assemble via this mechanism, therefore, they <i>do</i>."</div>
Don't do this.
</div>-->
</section>
<section>
<h2> How do clusters form? </h2>
Growing consensus that they form by "conveyor belt": material flows in from large scales
over several free-fall times.
<br>
<div class=smaller>
<ul>
<li> <a href="https://ui.adsabs.harvard.edu/abs/2019arXiv190901565K">Krumholz & McKee 2019 (theory)</a>,
<a href="https://ui.adsabs.harvard.edu/abs/2019ARA%26A..57..227K">Krumholz, McKee, and Bland-Hawthorn ARAA 2019 (overview)</a>
<li> <a href="http://esoads.eso.org/abs/2016MNRAS.457.4536W">Walker+ 2016</a>,
<a href="https://ui.adsabs.harvard.edu/abs/2019MNRAS.486..283B">Barnes+ 2019</a> for CMZ case studies
<li> <a
href="http://adsabs.harvard.edu/abs/2018MNRAS.473.1059U">Urquhart+
2018</a> for the Galaxy overview (talk this session)
</ul>
</div>
</section>
<section>
<section>
<h6> YMCs start large, collapse to small </h6>
<div class="sl-block" style="width: auto; height: auto; font-size: 30px; font-weight: normal">
<ul>
<li><a href="http://adsabs.harvard.edu/abs/2017MNRAS.472.1760G">Gennaro+ 2017</a>: Westerlund 1 is collapsing</li>
<li> <a href="http://esoads.eso.org/abs/2015MNRAS.449..715W">Walker+ 2015</a>,
<a href="http://esoads.eso.org/abs/2016MNRAS.457.4536W">2016</a>: gas is more extended than stellar cluster </li>
</div>
<div class="sl-block" data-block-type="image"
style="margin-left:auto; margin-right: auto; max-width: 650px; max-height:500px;">
<div class="sl-block-content" style="z-index: 11;">
<p><center>
<img class="center-fit" src='assets/Walker2015_Tracing0_Fig7_annotated.png'>
</center> </p>
</div>
</div>
<aside class=notes>
solid lines are gas, dotted/dashed are star clusters
</aside>
</section>
</section>
<section>
<section>
<h6> Simulation: Accretion from large scales </h6>
<div class="sl-block" style="margin-left:auto; margin-right: auto; width: 806px;">
<img src="assets/Smilgys2017.png">
<div style="position: relative; bottom:130px; left: -20%; font-size:25px">
<a href="http://adsabs.harvard.edu/abs/2017MNRAS.472.4982S" target="_blank">Smilgys & Bonnell 2017</a>
</div>
<div style="position: relative; bottom:165px; right: -32%; font-size:25px">
(No feedback)
</div>
</div>
<aside class=notes>
We may hear about similar constructions in Rowan's talk
</aside>
</section>
</section>
<section data-id="558348493b3fc8afd4de33237a452c98">
<div class="sl-block" data-block-type="text" style="width: 942px; height: auto;" data-block-id="fa12fcded28569f8d6b538f805cb869a">
<div class="sl-block-content" data-placeholder-tag="h2"
data-placeholder-text="Title Text" style="z-index: 11;">
<h4>Catalogs of forming clusters in the Galaxy
constrain their formation path</h4>
</div>
</div>
<center>
<div class="sl-block" data-block-type="text" style="width: 806px; height: auto;" data-block-id="abb85ba9b28630306509ba413c7de4e7">
<div class="sl-block-content" data-placeholder-tag="p" data-placeholder-text="Text" style="z-index: 12; font-size:24px">
<ul>
<li>Galactic plane surveys find few (~10s) of high-mass protoclusters
<ul>
<li style="font-size:18px">
<a href="http://adsabs.harvard.edu/abs/2012ApJ...758L..29G" target="_blank">Ginsburg+ 2012</a>,
Urquhart+ <a href="http://adsabs.harvard.edu/abs/2014MNRAS.437.1791U" target="_blank">2014a</a>,
<a href="http://esoads.eso.org/abs/2014MNRAS.443.1555U" target="_blank">b</a>,
<a href="http://adsabs.harvard.edu/abs/2018MNRAS.473.1059U" target="_blank">2018</a>,
<a href="http://esoads.eso.org/abs/2014prpl.conf..291L" target="_blank">Longmore+ 2014</a>,
<a href="http://adsabs.harvard.edu/abs/2017MNRAS.470.1462L">2017</a>
<a href="http://esoads.eso.org/abs/2017MNRAS.466..340C" target="_blank">Contreras+ 2017</a>
</li>
</ul>
</li>
</ul>
<img src='assets/Urquhart2018_ATLASGAL.jpeg'>
</div>
</div>
</center>
</section>
<section>
<section>
Several Galactic clusters could not have formed directly from collapse of existing clusters
<img src="starformmapper_assets/clump_cluster_flip.svg" style='height:85%; position: relative; margin-top:-3%;'>
<div class="smaller2" style="position:relative; top:-10%; margin-left:0%; margin-right:50%;">
<a href="https://ui.adsabs.harvard.edu/abs/2019ARA%26A..57..227K">Krumholz, McKee, & Bland-Hawthorn 2019</a>
</div>
<aside>
<br>
Mass-radius viewed a little differently: lines draw density profiles from present-day
clusters. Gas blobs (blue) must live below the lines to be massive enough to create
those clusters. May be possible in the CMZ, not possible in "normal" galactic environments
<br>
<br> Implication: clumps seen on previous plot may evolve up, or there may not be
any mapping at all.
</aside>
</section>
</section>
<section>
<section>
<h2> How does cluster formation depend on environment?</h2>
<ul>
<li> The cluster mass function slope appears constant
(empirical; <a href="https://ui.adsabs.harvard.edu/abs/2019ARA%26A..57..227K">Krumholz, McKee, & Bland-Hawthorn 2019</a>)
</li>
<li> Combinations of shear and feedback destroying parent clouds
limits the mass of the most massive cluster in a galaxy (theory; <a
href="http://adsabs.harvard.edu/abs/2017MNRAS.469.1282R">Reina-Campos
& Kruijssen 2017</a>) </li>
<li> The density of the ISM limits the minimum cluster mass, as bound objects
cannot remain independent above a certain density (theory; <a
href="http://adsabs.harvard.edu/abs/2017MNRAS.469.1282R">Trujillo-Gomez+
2019</a>) </li>
<aside class=notes>
Unsure, but we may hear more about how this works in simulation rather than 0D detail
in Sarah Loebman's talk
</aside>
</section>
</section>
<section>
NGC 253 contains a nuclear starburst (\(\sim2 M_\odot\) yr<sup>-1</sup>) <br>
<img src="starformmapper_assets/nature12351-f1.jpg" style='margin: auto; height:87%'>
<div class=smaller style='position: relative; top:-10%; left:20%;'>
<a href="http://adsabs.harvard.edu/abs/2013Natur.499..450B">Bolatto+ 2013</a>
</div>
</section>
<section>
<div><a href="http://adsabs.harvard.edu/abs/2018ApJ...869..126L">Leroy+2018</a> resolved the starburst into protoclusters <span class=smaller></span></div>
<div class=smaller> These protoclusters account for up to 100% of the starburst </div>
<span class=image style='height:80%; background-image: url(colloquium_assets/Leroy2018_Forming_fig1.svg)'>
</span>
<!--<div class=smaller style='position:relative; top: 20%'> 2 pc beam = 0.11" </div>-->
<aside class=notes>
<ul>
<li> Mark Gorski's 36 GHz data used to measure ionizing luminosities; all have bright free-free </li>
<li> Theoretical suggestion is that these clusters are limited to a
narrow range of masses, and most or all bound structures will merge into
clusters... </li>
</ul>
</aside>
</section>
<section>
<div class=smaller>
NGC 253 protoclusters;
our Galaxy's biggest clusters are slightly smaller & less massive
</div>
<span class=image style='height:80%; background-image: url("colloquium_assets/Leroy2018_Forming_fig5b.svg")'>
</span>
<div style="position:relative; top:-22%; left:17%;">
<span class=smaller><a href="http://adsabs.harvard.edu/abs/2018ApJ...869..126L">Leroy+2018</a></span>
</div>
<aside class=notes>
<ul>
<li> Galactic clusters live to the bottom-left
</ul>
</aside>
</section>
<section>
<section>
<h6>The extragalactic view of Galactic clusters</h6>
<div class=smaller2>If you put Sgr B2 in NGC 253, it would be on the faint end of the detected clusters, but would be detectable.</div>
<span class=image style='height:80%; background-image: url(colloquium_assets/Leroy2018_Forming_fig4.svg);'>
</span>
<aside class=notes>
<ul>
<li> Galactic clusters live to the bottom-left
</ul>
</aside>
</section>
</section>
<section>
<div style="margin-top: 5%; margin-left:10%; margin-right:10%;" class=center>
<div> (moderately) less massive clusters were detectable but not detected in NGC 253: </div>
<br>
<br>
<br>
<div> The extreme starburst may preferentially produce high-mass clusters:
theories say it has both a higher high-mass cutoff and low-mass cutoff to the mass
function
</div>
</div>
</section>
<section>
<span class=image style='background-size: 1024px; background-position: center center; background-image: url(colloquium_assets/gc_fullres_6_small.jpg);'>
<h4> The Galactic Central Molecular Zone is home to the most massive forming clusters </h4>
<div style="position: relative; bottom: -60%; left:-40%" class="smaller3"><a class=darkbg href="http://images.nrao.edu/664">Image: NRAO, Ginsburg</a></div>
<div style="text-align:left; position: relative; bottom: -61%; left:1%" class="smaller3">
<a class=darkbg href="http://adsabs.harvard.edu/abs/2018arXiv181000266M">Mills, Ginsburg+ 2018</a><span style="color:white">;</span>
<a class=darkbg href="http://esoads.eso.org/abs/2013MNRAS.435.2598K">Kruijssen & Longmore 2013</a></div>
<div style="right:10%; margin-top:37%; text-align:right;" class=smaller2>
<span style="color: orange;"> Cold Dust </span><br>
<span style="color: rgb(200,60,255)"> Hot, ionized gas </span><br>
<span style="color: turquoise;"> Hot dust/PAHs </span><br>
</div>
</span>
<aside class=notes>
<ul>
<li> Cold dust is where new stars will form
<li> Average molecular cloud densities about 1-2 orders of magnitude greater than in the Galactic disk
<li> Clouds are warmer and more turbulent than the disk
<li> Cloud conditions analogous to early universe [e.g., <a href="http://esoads.eso.org/abs/2013MNRAS.435.2598K">Kruijssen & Longmore 2013</a>]
<li> This is a "local"/"nearby" region where we can test theories that predict, e.g., higher
cluster formation efficiency at higher density
</ul>
</aside>
</section>
<section>
<span class=image style='background-size: 1024px; background-position: center center; background-image: url(colloquium_assets/gc_fullres_6_small_singlezoom_lines.jpg);'>
<h4> The Galactic Central Molecular Zone is home to the most massive forming clusters </h4>
<div style="position: relative; bottom: -60%; left:-40%" class="smaller3"><a class=darkbg href="http://images.nrao.edu/664">Image: NRAO, Ginsburg</a></div>
<div style="position: relative; bottom: -61%; left:1%; text-align:left" class="smaller3"><a class=darkbg href="http://adsabs.harvard.edu/abs/2018ApJ...864L..17G">Ginsburg+ 2018a</a></div>
</span>
<aside class=notes>
<ul>
<li> Zoom-in to the Sgr B2 cloud:
<li> Most massive, actively star-forming cloud in the galaxy: 10<sup>7</sup> M<sub>⊙</sub>
<li> ALMA 3mm image showing mix of dust and free-free emission
</ul>
</aside>
</section>
<section>
<span class=image style='background-size: 1024px; background-position: center center; background-image: url(colloquium_assets/gc_fullres_6_small_doublezoom.jpg);'>
<h4> The Galactic Central Molecular Zone is home to the most massive forming clusters </h4>
<div style="position: relative; bottom: -60%; left:-40%" class="smaller3"><a class=darkbg href="http://images.nrao.edu/664">Image: NRAO, Ginsburg</a></div>
<div style="position: relative; bottom: -61%; left:1%; text-align:left;" class="smaller3"><a class=darkbg href="http://adsabs.harvard.edu/abs/2018ApJ...864L..17G">Ginsburg+ 2018a</a></div>
</span>
<aside class=notes>
<ul>
<li> Each zoom reveals more sources.
<li> Most of the stars reside in bound proto-clusters
</ul>
</aside>
</section>
<section>
<h6>Cluster Formation Efficiency </h6>
<ul><li>What fraction of all stars form in bound clusters?</li>
<ul><li>Not all do (e.g., <a href="http://adsabs.harvard.edu/abs/2010MNRAS.409L..54B">Bressert+ 2010</a>, <a href="http://adsabs.harvard.edu/abs/2018MNRAS.475.5659W">Ward & Kruijssen 2018</a>)</li>
<li>Varies with environment, increasing toward higher density</li>
<li>More stars formed in higher density regions in the early universe,
so more in clusters</li>
</ul>
<li>We can measure this locally, given an appropriate change in environment
</li>
</ul>
<span class=image style='height: 300px; background-position: center center; background-size: contain; background-image: url(assets/gc_fullres_6_small.jpg)'>
</span>
</section>
<section>
<h6>Sgr B2: Most massive cloud + protoclusters</h6>
<div class="sl-block" data-block-type="image"
style="margin-left:auto; margin-right: auto; width: 900px;">
<div class="sl-block-content" style="z-index: 11;">
<p><center>
<img class="center-fit" src='assets/cores_on_continuum_peak_full_zoomin.png'>
</center> </p>
</div>
</div>
<div style='position: absolute; bottom: 630px; left: 70px; font-size: 22px; width:300px'>
Protostar-counting observations
</div>
<div style='position: absolute; bottom: 130px; left: 70px; font-size: 22px; width:300px'>
Tightly bound cluster: \(\sigma_{1D} \sim 9-12~\mathrm{km~s}^{-1} \)
\(\sigma_{1D} < v_{esc} \sim 14~\mathrm{km~s}^{-1}\)
from RRL LOS velocities
</div>
<div class="sl-block" style="width: auto; height: auto; font-size: 30px; font-weight: normal">
Un- and clustered star formation in the same event
(<a href="http://adsabs.harvard.edu/abs/2018ApJ...853..171G">Ginsburg+ 2018</a>)
</div>
</section>
<section>
<h4 style="white-space:nowrap;"> In denser <span class=smaller>(parts of)</span> galaxies, more stars form in clusters </h4>
<span class=image style='height:90%; background-image: url(colloquium_assets/GammaVsSigmaGas_extragalonly.svg);'></span>
<div style="position: absolute; bottom: 19%; right:9%; text-align:right;" class="smaller2">
<a href="http://adsabs.harvard.edu/abs/2012MNRAS.426.3008K">Kruijssen 2012</a>
<br>
<a href="http://adsabs.harvard.edu/abs/2018ApJ...864L..17G">Ginsburg & Kruijssen 2018</a>
</div>
<div class=smaller2 style="position: absolute; top: 15%; text-align:left; left:21%; width: 30%;">
<span style="font-family: Times;">Γ</span> is the fraction of stars forming in bound clusters
</div>
<div class=smaller2 style="position: absolute; top: 71%; text-align:center; left:29%; width:20%; color: rgb(66, 140, 191);">
Galaxy averages
</div>
<aside class=notes>
<ul>
<li> Y-axis is fraction of stars forming in <b>bound</b> clusters, the "cluster formation efficiency" (CFE)
<li> Milky Way point is the one w/large errors
</ul>
</aside>
</section>
<section>
<h4 style="white-space:nowrap;"> "Bound Cluster Fraction" is predicted higher the CMZ </h4>
<span class=image style='height:90%; background-image: url(colloquium_assets/GammaVsSigmaGas_withTheory_withoutSB2.svg);'></span>
<div style="position: absolute; bottom: 19%; right:9%; text-align:right;" class="smaller2">
<a href="http://adsabs.harvard.edu/abs/2012MNRAS.426.3008K">Kruijssen 2012</a>
<br>
<a href="http://adsabs.harvard.edu/abs/2018ApJ...864L..17G">Ginsburg & Kruijssen 2018</a>
</div>
<div class=smaller2 style="position: absolute; top: 15%; text-align:left; left:21%; width: 30%;">
<span style="font-family: Times;">Γ</span> is the fraction of stars forming in bound clusters
</div>
<div class=smaller2 style="position: absolute; top: 71%; text-align:center; left:29%; width:20%; color: rgb(66, 140, 191);">
Galaxy averages
</div>
<div class=smaller2 style="position: absolute; top: 43%; text-align:center; left:67.7%; width:20%; color: red;">
CMZ prediction
</div>
<aside class=notes>
<ul>
<li> X-axis is gas surface density, can be approximately treated as same as other plot
<li> Local model is blue dotted (depends on local mean density),
global model is red (depends on Galaxy scale height)
</ul>
</aside>
</section>
<section>
<h4 style="white-space:nowrap;"> The "Bound Cluster Fraction" is higher in the CMZ </h4>
<span class=image style='height:90%; background-image: url(colloquium_assets/GammaVsSigmaGas_withTheory.svg);'></span>
<div style="position: absolute; bottom: 19%; right:9%; text-align:right;" class="smaller2">
<a href="http://adsabs.harvard.edu/abs/2012MNRAS.426.3008K">Kruijssen 2012</a>
<br>
<a href="http://adsabs.harvard.edu/abs/2018ApJ...864L..17G">Ginsburg & Kruijssen 2018</a>
</div>
<div class=smaller2 style="position: absolute; top: 15%; text-align:left; left:21%; width: 30%;">
<span style="font-family: Times;">Γ</span> is the fraction of stars forming in bound clusters
</div>
<div class=smaller2 style="position: absolute; top: 71%; text-align:center; left:29%; width:20%; color: rgb(66, 140, 191);">
Galaxy averages
</div>
<div class=smaller2 style="position: absolute; top: 43%; text-align:center; left:67.7%; width:20%; color: red;">
CMZ prediction
<br><span style="color: orange; text-align: center;">Sgr B2 data</span>
</div>
<aside class=notes>
<ul>
<li> CFE is clearly higher in denser regions in <i>our</i> Galaxy
</ul>
</aside>
</section>
<section>
<h6>Sgr B2 N: Collapse</h6>
<div class="sl-block" style="width: auto; height: auto; font-size: 26px; font-weight: normal">
Collapse is morphologically obvious
(<a href="https://ui.adsabs.harvard.edu/abs/2019A%26A...628A...6S">Schwörer+ 2019</a>)
</div>
<div class="sl-block" style="width: auto; height: auto; font-size: 26px; font-weight: normal">
There is evidence of accretion from larger scales
</div>
<div class="sl-block" data-block-type="image"
style="margin-left:auto; margin-right: auto; width: 800px;">
<div class="sl-block-content" style="z-index: 11;">
<p><center>
<img class="center-fit" src='assets/cores_on_continuum_peak_fullN_zoomin.png'>
</center> </p>
</div>
</div>
<div style='position: absolute; bottom: 180px; left: 50px; font-size: 22px; width:400px'>
</div>
</section>
<section>
<h6>A closer look at Sgr B2 N</h6>
<img src="colloquium_assets/schworer2019_fig1.svg" style="height:70%; min-height: 600px; z-index:0">
<div class=smaller style="position: relative; top:-3%">
CH<sub>3</sub>OCHO: red, C<sub>2</sub>H<sub>5</sub>CN: blue, 242 GHz continuum: green
</div>
<img src="starformmapper_assets/SgrB2LineStacking.png" class=fragment style="position: relative; top:-320px; z-index:5">
<aside class=notes>
The molecule maps were made by stacking 143 and some large number of CH3OCHO and C2H5CN, respectively
</aside>
</section>
<section>
<h6>A closer look at Sgr B2 N</h6>
<div class=smaller> <a href="https://ui.adsabs.harvard.edu/abs/2019A%26A...628A...6S">Schwörer+ 2019</a>: Accretion along filaments</div>
<img src="colloquium_assets/Schworer2019_fig2.svg" style="width:90%">
<div style="position:relative; top:1%;" class=smaller>
Several filaments have velocity gradients pointing in to the central region (~2000 \(\mathrm{M}_\odot\)) of Sgr B2 N: the central cluster (~0.1 pc)
is accreting from ~half-pc scales
<br> Protostars are also being accreted
</div>
</section>
<section>
<h6>A closer look at Sgr B2 N</h6>
<div class=smaller> <a href="https://ui.adsabs.harvard.edu/abs/2019A%26A...628A...6S">Schwörer+ 2019</a>: Accretion along filaments: \(\sim0.1~\mathrm{M}_\odot \mathrm{yr}^{-1}\)</div>
<img src="colloquium_assets/Schworer2019_fig4.svg" style="height:80%; min-height: 600px">
</section>
<section class=center>
<div style="margin-top: 20%; margin-left:10%; margin-right:10%;" class=center>
Clusters get their mass from outside - they accrete
<br>
<br>
<br>
More material means proportionally more stars form in clusters
</div>
</section>
<section>
<section data-id="688e275e4f4751d7bc0fc68ee3d68b82">
<div class="sl-block" data-block-type="text" style="width: auto; height: auto;" data-block-id="fd2e732f3eb46152cc9857131e878116">
<div class="sl-block-content" data-placeholder-tag="h2" data-placeholder-text="Title Text" style="z-index: 10;">
<h2 style="word-break: keep-all; hyphens: none;">How is star formation in high-mass clusters different?</h2>
</div>
</div>
<div class="sl-block" data-block-type="text" style="width: auto; height: auto;" data-block-id="7b24eb3dce885998fa19c253a9f15bbf">
<div class="sl-block-content" data-placeholder-tag="p" data-placeholder-text="Text" style="z-index: 11;">
<ul>
<li>The IMF should depend on density, feedback <div style='font-size:24px'>(e.g., <a href="http://adsabs.harvard.edu/abs/2018MNRAS.tmp.1196J"
target="_blank">Jones & Bate 2018</a>, \(M_c \propto \rho^{-1/5}\) )</div></li>
<li>Feedback from one star affects many in clustered regions
<div style='font-size:24px; display:inline'>(<a href="http://adsabs.harvard.edu/abs/2016MNRAS.463.2553R">Rosen+ 2016</a>,
<a href="http://adsabs.harvard.edu/abs/2017ApJ...842...92G">Ginsburg+ 2017</a>)</div></li>
<li>Total star formation efficiency is higher (because it goes on for more \(t_{ff}\)s?). SFE<sub>ff</sub> may be higher?
<div style='font-size:24px; '>
(obs: <a href="http://adsabs.harvard.edu/abs/2016A%26A...595A..27G">Ginsburg+ 2016</a>,
<a href="http://adsabs.harvard.edu/abs/2017IAUS..316..117G">Gouliermis & Hony 2015</a>,
sim:
<a href="http://adsabs.harvard.edu/abs/2018MNRAS.475.3511G">Grudić+ 2018</a>
)
</div>
</li>
<li> Collisions assemble the most massive stars?
<div style='font-size:24px; '>
(e.g., <a href="http://adsabs.harvard.edu/abs/2013MNRAS.430.1018F">Fujii+ & PZ 2013</a>,
but see <a href="http://adsabs.harvard.edu/abs/2011MNRAS.410.2799M">Moeckel & Clarke 2011</a>)
</div>
<ul><li>
<div class=smaller>Interactions certainly affect disks (e.g., <a href="http://adsabs.harvard.edu/abs/2017A%26A...604A..91W">Wijnen+ 2017</a>,
<a href="http://adsabs.harvard.edu/abs/2016ApJ...828...48V">Vincke+ 2016</a>,
<a href="https://ui.adsabs.harvard.edu/abs/2014MNRAS.441.2094R/abstract">Rosotti+ 2014</A>)
</div>
</li>
</ul>
</li>
</ul>
</div>
</div>
</section>
</section>
<section>
<h2>IMF development: ongoing work</h2>
<div class=smaller3> (slide from Roberto Galvan-Madrid)</div>
<img src="starformmapper_assets/CMF_W43_W51_Robertog.png">
Possible top-heavy CMF in W43, more Salpeter-like slope in W51? To be confirmed.
</section>
<section>
<h4> Accreting massive young stars affect their environment</h4>
<span class="image" style="background-image: url(colloquium_assets/methanol_scalebar_e2e.png); width:80%">
<div style="position: relative; top: 73%; left:-10%;" class="smaller2"><a href="http://adsabs.harvard.edu/abs/2017ApJ...842...92G">Ginsburg+ 2017</a></div>
</span>
<aside class=notes>
<ul>
<li> The classic picture is incomplete: HMYSOs have a big effect
*while* they are accreting too
<li> There is a HMYSO at the center (W51e2e)
<li> The surrounding greyscale circular hot core is seen in
methanol emission
<li> Data are from ALMA
</ul>
</aside>
</section>
<section>
<h4> Accreting massive young stars affect their environment</h4>
<span class="image" style="background-image: url(colloquium_assets/outflows_over_methanol_e2e.png); width:80%">
<div style="position: relative; top: 73%; left:-10%;" class="smaller2"><a href="http://adsabs.harvard.edu/abs/2017ApJ...842...92G">Ginsburg+ 2017</a></div>
</span>
</span>
<aside class=notes>
<ul>
<li> The outflow points to the central accreting star
<li> The outflow implies the existence of a disk
</ul>
</aside>
</section>
<section>
<span class="image" style="background-image: url(assets/W51e2TemperatureProfileSlide.png); width:90%">
<div style="position: absolute; bottom: 100px; left:100px" class="smaller2"><a href="http://adsabs.harvard.edu/abs/2017ApJ...842...92G">Ginsburg+ 2017</a></div>
</span>
</section>
<section>
<h4> More material is flowing in to be heated</h4>
<img src="starformmapper_assets/w51_n2hp.gif">
<div>W51-E N<sub class=smaller>2</sub>H+ from ALMA-IMF</div>
</section>
<section>
<section>
<div>
The same thermal feedback affects Sgr B2, though more extremely
</div>
<img src="starformmapper_assets/sgrb2n_sio_outflow.png" style="height:85%; min-height:600px;">
</section>
<section>
<h4>And W49....</h4>
<img src="starformmapper_assets/w49.png" style="height:85%">
</section>
</section>
<section>
<div class=smaller2>
There is less direct evidence that lower-mass clusters (which generally contain less massive forming stars; Orion Source I is \(15\mathrm{M}_\odot\)
and heats only its 100-AU disk to >100 K)
</div>
<img src="assets_orion/OrionSourceI_data_stretched_B7.svg" style="height:75%; min-height:600px">
<div class=smaller2 style="position:relative; margin-top:-2%;">
are affected by such thermal feedback, but they exhibit other effects...
</div>
</section>
<section>
<span class=image style="background-image:url(assets_orion/Orion_SourceI_B6_continuum_r-2.clean0.5mJy.selfcal.ampphase5.image.tt0.pbcor_inset.png); margin-top:-2%; height:100%">
</section>
<section>
<div> Evidence of disk truncation compared to low-mass SFRs in the embedded regions of Orion </div>
<div class=smaller style="z-order:5">(Justin Otter+, in prep)</div>
<img src="starformmapper_assets/scaling_rels_scaledflux.png" style="height:75%; min-height:450px; margin-top:0%;">
<aside class=notes>
<a href="http://adsabs.harvard.edu/abs/2018ApJ...865..157A">Andrews+ 2018</a> data are from Lupus
</aside>
</section>
<section>
<div class="sl-block" data-block-type="text" style="width: auto; height: auto;" data-block-id="fd2e732f3eb46152cc9857131e878116">
<div class="sl-block-content" data-placeholder-tag="h2" data-placeholder-text="Title Text" style="z-index: 10;">
<h2 style="word-break: keep-all; hyphens: none;">How is star formation in high-mass clusters different?</h2>
</div>
</div>
<div class="sl-block" data-block-type="text" style="width: auto; height: auto;" data-block-id="7b24eb3dce885998fa19c253a9f15bbf">
<div class="sl-block-content" data-placeholder-tag="p" data-placeholder-text="Text" style="z-index: 11;">
<ul>
<li>The IMF should depend on density, feedback: WIP </li>
<li>Feedback from one star affects many in clustered regions: Evidence in W51, others WIP
<li>Total star formation efficiency is higher (because it goes on for more \(t_{ff}\)s?). SFE<sub>ff</sub> may be higher?
(hinted at in NGC 253, otherwise not seen in this talk)
</li>
<li> Collisions assemble the most massive stars?
<div style='font-size:24px; '>
No evidence presented here - Sgr B2 and Orion are tantalizing places to look
</div>
</li>
<ul><li>
<div >Interactions certainly affect disks: Orion's disks are smaller than other SF regions'
</div>
</li>
</ul>
</li>
</ul>
</div>
</div>
</section>
<section>
<h6>Summary</h6>
<ul>
<li> Clusters gain mass as they form </li>
<li> More stars form in bound clusters in higher density regions </li>
</ul>
<div></div>
<p></p>
<ul>
<li>Within forming clusters, feedback from the most massive stars affects neighbors,
suppressing fragmentation</li>
<li>Dynamical interactions are important in clusters, which means disk properties
are different (they're smaller)</li>
</ul>
</section>
<section>
<img src="starformmapper_assets/ALMAIMF.png" style="height:700px width:100%">
</section>
<section>
<h6>Future Directions</h6>
<ul>
<li>Complete census of spatial and mass distribution of protostars
from the ALMA-IMF program
</li>
<li>A direct connection between the protostellar and stellar
populations with JWST imaging and spectroscopy to pierce the
extinction layers
</li>
</ul>
</section>
<section>
<section>
<h6>YMCs are the best local analogs<br> of proto-Globular Clusters</h6>
<ul>
<li>
and they're pretty good analogs <div class=smaller>(Bastian+
<a href="http://adsabs.harvard.edu/abs/2013MNRAS.436.2852B">2013</a>,
<a href="http://adsabs.harvard.edu/abs/2014MNRAS.443.3594B">2014a</a>,
<a href="http://adsabs.harvard.edu/abs/2014MNRAS.445..378B">2014b</a>,
<a href="http://esoads.eso.org/abs/2016EAS....80....5B">2016</a>,
Cabrera-Ziri+
<a href="http://esoads.eso.org/abs/2014MNRAS.441.2754C">2014</a>,
<a href="http://esoads.eso.org/abs/2015MNRAS.448.2224C">2015</a>
) </div>
</li>
<li>GCs probe Galaxy formation histories
<div class=smaller style="display:inline">(e.g.,
<a href="http://adsabs.harvard.edu/abs/2006ARA%26A..44..193B">Brodie & Strader 2006</a>,
<a href='http://adsabs.harvard.edu/abs/2018MNRAS.475.4309P'>Pfeffer+ 2018</a>,
<a href="http://adsabs.harvard.edu/abs/2018arXiv180605680K">Kruijssen+ 2018</a>
)</div>
</li>
<li> Open questions in GC populations to address with YMCs:
<ul>
<li>How does the power-law cluster MF evolve to a peaked one?
<div class=smaller>Low-mass get destroyed, e.g. <a href="http://adsabs.harvard.edu/abs/2012MNRAS.426.3008K">Kruijssen 2012</a></div>
</li>
<li>How do GCs form? i.e., how should we form GCs in simulations?
<li>Why do GCs contain MSPs?
<div style='display: inline' class=smaller> (what are MSPs)</div>
</li>
</ul>
</li>
</ul>
</section>
<section>
<h6>MSPs in GCs</h6>
<ul>
<li><b>MSP</b>s = Multiple Stellar Populations,
as opposed to <div><b>SSP</b>s = Simple (or Single) Stellar Populations</div>
</li>
<ul><li> Distinct sub-populations exist within most or all globular clusters
that are younger and/or chemically different
</li></ul>
<li><a style="font-size:90%" href="https://www.annualreviews.org/doi/abs/10.1146/annurev-astro-081817-051839">Bastian & Lardo 2017 ARAA review</a>:
<div>"Many scenarios have been suggested to explain [MSPs], with most
invoking multiple epochs of star formation within the
cluster", but most of these fail</div>
</li>
<aside>
<li> YMCs lack MSPs, but have other features that may be related </li>
<ul>
<li> Extended Main Sequence Turnoffs (EMSTOs) - stellar evolution or multiple SF events? </li>
<li> Split Main Sequence - cluster stars rotate more rapidly than field? </li>
</ul>
</aside>
</ul>
</section>
</section>
<section>
<section>
W51
</section>
<section class="fullscreen reveal slides">
<span class="image" style="background-image: url(assets/moxc_points_on_cband.png);">
<center><h6 style='position:relative'>W51: X-ray stars</h6></center>
<div class="smaller2"><a href="http://esoads.eso.org/abs/2014ApJS..213....1T">MOXC, Townsley+ 2014</a></div>
</span>
</section>
<section class="fullscreen reveal slides">
<span class="image" style="background-image: url(assets/moxc_points_contours_on_cband.png);">
<center><h6 style='position:relative'>W51: X-ray stars</h6></center>
<div class="smaller2"><a href="http://esoads.eso.org/abs/2014ApJS..213....1T">MOXC, Townsley+ 2014</a></div>
</span>
</section>
<section class="fullscreen reveal slides">
<span class="image" style="background-image: url(assets/moxc_points_contours_on_cband_withcores.png);">
<center><h6 style='position:relative'>W51: X-ray stars + Cores and UCHII regions</h6></center>
<div class="smaller2">Ginsburg+
<a href="http://adsabs.harvard.edu/abs/2016A%26A...595A..27G">2016</a>,
<a href="http://adsabs.harvard.edu/abs/2017ApJ...842...92G">2017</a>
</div>
</span>
</section>
<section class="fullscreen reveal slides">
<span class="image" style="background-image: url(assets/moxc_contours_on_cband_withcores.png);">
<center><h6 style='position:relative'>W51: Cores and UCHII regions</h6></center>
<div class="smaller2">Ginsburg+
<a href="http://adsabs.harvard.edu/abs/2016A%26A...595A..27G">2016</a>,
<a href="http://adsabs.harvard.edu/abs/2017ApJ...842...92G">2017</a>
</div>
</span></section>
</section>
<section>
<h2> How do clusters die? </h2>
Cluster destruction determines their observability at later times
</section>
<section data-id="c1392fbd50110aefd563d28a68139a12">
<div class="sl-block" data-block-type="text" style="width: auto; height: auto;" data-block-id="151a50162be742f0390e9588549872f7">
<div class="sl-block-content" data-placeholder-tag="h2" data-placeholder-text="Title Text" style="z-index: 12;">
<h2>What is a high-mass cluster?</h2>
</div>
</div>
<span class="smaller2">(see <a href="https://ui.adsabs.harvard.edu/abs/2019ARA%26A..57..227K">Krumholz, McKee, and Bland-Hawthorn 2019</a>
for a complete review)</a></span>
<div class="sl-block" data-block-type="text" style="width: auto; height: auto;" data-block-id="5dfe0d23dab8754dbcb054193314aee7">
<div class="sl-block-content" data-placeholder-tag="p" data-placeholder-text="Text" style="z-index: 11; background-color: rgba(0, 0, 0, 0);" data-has-custom-html="" dir="ui">
<ul>
<li>Gravitationally bound collection of stars that survives the loss of gas</li>
<li>Collection of coeval stars that 'fully samples' the IMF</li>
<li>Clusters where interactions are important </li>
<ul><div class="smaller">
<li><a href="http://adsabs.harvard.edu/abs/2016MNRAS.457..313P">Portegies-Zwart 2016</a>,
<a href="http://adsabs.harvard.edu/abs/2015A%26A...577A.115V">Vincke+ 2016</a>
</li></div></ul>
<li>Around \(10^4~\mathrm{M}_\odot \), \(v_{esc} \gtrsim10\) km
s\(^{-1}\), so ionization alone does not disrupt gas</li>
<div class="smaller"><ul><li>
<a href="http://adsabs.harvard.edu/abs/2012ApJ...758L..28B"> Bressert+ 2012</a>,
<a href="http://esoads.eso.org/abs/2015ApJ...815...68M"> Matzner & Jumper 2015</a>,
<a href="http://adsabs.harvard.edu/abs/2009ApJ...703.1352K">Krumholz & Matzner 2009 </a>,
<a href="http://adsabs.harvard.edu/abs/2018MNRAS.475.3511G">Grudić+ 2018</a>
</li></ul></div>
</ul>
</div>
</div>
</section>
<section>
<!--<span class="image" style="background-image: url(assets/cluster_mass_vs_n_ostars.png); width:100%; height=100%;"> -->
<div class='sl-block' style='display:block; height: 1024px; left:0 px; top: 0px;'>
<img src="assets/cluster_mass_vs_n_ostars.png" style=''>
</div>
</section>
<section>
<p>
<em>Credits</em>:
<a href="http://newton.cx/~peter/">Peter Williams</a>,
<a href="http://git-scm.com/">git</a>,
<a href="http://lab.hakim.se/reveal-js/">reveal.js</a>,
<a href="http://www.mathjax.org/">MathJax</a>,
<a href="http://mozilla.github.io/pdf.js/">pdf.js</a>
</p>
</div>
</section>
</div>
</div>
<!-- End of slides. -->
<script src="reveal/lib/js/head.min.js"> </script>
<script src="reveal/js/reveal.js"> </script>
<script src="pdfjs/compatibility.js"> </script>
<script src="pdfjs/pdf.js"> </script>
<script src="fullscreen.js"> </script>
<script>
Reveal.initialize({
controls: false,
progress: false,
history: true,
center: false,
keyboard: true,
touch: true,
overview: true,
mouseWheel: true,
width: 1024,
height: 768,
maxScale: 10,
margin: 0.0,
theme: false, // hardcoded with CSS import in <head>
transition: 'none', // default/cube/page/concave/zoom/linear/fade/none
transitionSpeed: 'default', // default/fast/slow
math: {
//mathjax: 'mathjax/MathJax.js',
//config: 'TeX-AMS_HTML-full',
mathjax: 'https://cdn.mathjax.org/mathjax/latest/MathJax.js',
config: 'TeX-AMS_SVG'
},
dependencies: [
{ src: 'reveal/lib/js/classList.js',
condition: function() { return !document.body.classList; }},
{ src: 'reveal/plugin/markdown/marked.js',
condition: function() { return !!document.querySelector ('[data-markdown]'); }},
{ src: 'reveal/plugin/markdown/markdown.js',
condition: function() { return !!document.querySelector ('[data-markdown]'); }},
{ src: 'reveal/plugin/highlight/highlight.js', async: true,
callback: function() { hljs.initHighlightingOnLoad (); }},
{ src: 'reveal/plugin/notes/notes.js', async: true,
condition: function() { return !!document.body.classList; }},