-
Notifications
You must be signed in to change notification settings - Fork 118
/
Copy path338. Counting Bits.cpp
81 lines (69 loc) · 2.15 KB
/
338. Counting Bits.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
/**
Given a non negative integer number num. For every numbers i in the range 0 ≤ i ≤ num calculate the number of 1's in their binary representation and return them as an array.
Example 1:
Input: 2
Output: [0,1,1]
Example 2:
Input: 5
Output: [0,1,1,2,1,2]
Follow up:
It is very easy to come up with a solution with run time O(n*sizeof(integer)). But can you do it in linear time O(n) /possibly in a single pass?
Space complexity should be O(n).
Can you do it like a boss? Do it without using any builtin function like __builtin_popcount in c++ or in any other language.
**/
//Your runtime beats 60.09 % of cpp submissions.
class Solution {
public:
vector<int> countBits(int num) {
vector<int> ans;
for(int i=0;i<=num;i++){
int count = 0;
int j = i;
while(j!=0){
count+=j%2;
j/=2;
}
ans.push_back(count);
}
return ans;
}
};
//Your runtime beats 43.45 % of cpp submissions.
class Solution {
public:
vector<int> countBits(int num) {
vector<int> ans;
for(int i=0;i<=num;i++){
ans.push_back(__builtin_popcount(i));
}
return ans;
}
};
//from hint, suboptimal
//Runtime: 8 ms, faster than 99.05% of C++ online submissions for Counting Bits.
//Memory Usage: 7.8 MB, less than 100.00% of C++ online submissions for Counting Bits.
class Solution {
public:
vector<int> countBits(int num) {
vector<int> ans(num+1, 0);
for(int i = 1; i < num+1; i++){
ans[i] = ans[i/2] + i%2;
}
return ans;
}
};
//Your runtime beats 97.98 % of cpp submissions.
class Solution {
public:
vector<int> countBits(int num) {
vector<int> ret(num+1, 0);
for (int i = 1; i <= num; ++i)
ret[i] = ret[i&(i-1)] + 1; //by @fengcc
// ret[i] = ret[i/2] + i % 2; //by @sijiec
return ret;
}
};
/**
by @fengcc
i&(i-1) drops the lowest set bit. For example: i = 14, its binary representation is 1110, so i-1 is 1101, i&(i-1) = 1100, the number of "1" in its binary representation decrease one, so ret[i] = ret[i&(i-1)] + 1.
**/