-
Notifications
You must be signed in to change notification settings - Fork 118
/
Copy path62. Unique Paths.cpp
74 lines (65 loc) · 2.34 KB
/
62. Unique Paths.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
//Runtime: 4 ms, faster than 54.06% of C++ online submissions for Unique Paths.
//Memory Usage: 8.6 MB, less than 51.56% of C++ online submissions for Unique Paths.
class Solution {
public:
int uniquePaths(int m, int n) {
vector<vector<int> > grid(m, vector<int>(n));
// cout << m << " " << n << endl;
//range of the length of diagonal: 0 ~ (max possible i) + (max possible j)
for(int diag = 0; diag <= (n-1) + (m-1); diag++){
//i starts from the first position that j >= 0
//i is increased in the loop and its upper bound is m-1
//j + i must = diag
//j is decreased in the loop and its lower bound is 0
//dynamic programming
for(int i = max(0, diag-(n-1)), j = diag - i; i <= m-1 && j >= 0; i++, j--){
// cout << i << " " << j << endl;
if(i == 0 || j == 0){
grid[i][j] = 1;
}else{
grid[i][j] = grid[i-1][j] + grid[i][j-1];
}
}
}
return grid[m-1][n-1];
}
};
//Runtime: 0 ms, faster than 100.00% of C++ online submissions for Unique Paths.
//Memory Usage: 6.5 MB, less than 100.00% of C++ online submissions for Unique Paths.
class Solution {
public:
int uniquePaths(int m, int n) {
vector<vector<int>> dp(m+1, vector(n+1, 0));
//base case
dp[1][1] = 1;
for(int i = 1; i <= m; i++){
for(int j = 1; j <= n; j++){
if(i == 1 && j == 1) continue;
dp[i][j] = dp[i-1][j] + dp[i][j-1];
}
}
return dp[m][n];
}
};
//DP, O(n) space
//https://leetcode.com/problems/unique-paths/discuss/22954/C%2B%2B-DP
class Solution {
public:
int uniquePaths(int m, int n) {
//base case: top boundary and left boundary
// vector<vector<int>> dp(m, vector(n, 1));
vector<int> row(n, 1);
for(int i = 1; i < m; i++){
for(int j = 1; j < n; j++){
// dp[i][j] = dp[i-1][j] + dp[i][j-1];
/*
row[j] represnets for the value in last row,
just like dp[i-1][j]
*/
row[j] = row[j] + row[j-1];
}
}
// return dp[m-1][n-1];
return row[n-1];
}
};