-
Notifications
You must be signed in to change notification settings - Fork 0
/
game_agent.py
606 lines (441 loc) · 20.5 KB
/
game_agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
"""Finish all TODO items in this file to complete the isolation project, then
test your agent's strength against a set of known agents using tournament.py
and include the results in your report.
"""
import random
class SearchTimeout(Exception):
"""Subclass base exception for code clarity. """
pass
def custom_score(game, player):
# print("Custom score used")
"""Calculate the heuristic value of a game state from the point of view
of the given player.
This should be the best heuristic function for your project submission.
Note: this function should be called from within a Player instance as
`self.score()` -- you should not need to call this function directly.
Parameters
----------
game : `isolation.Board`
An instance of `isolation.Board` encoding the current state of the
game (e.g., player locations and blocked cells).
player : object
A player instance in the current game (i.e., an object corresponding to
one of the player objects `game.__player_1__` or `game.__player_2__`.)
Returns
-------
float
The heuristic value of the current game state to the specified player.
"""
if game.is_loser(player):
return float('-inf')
if game.is_winner(player):
return float('inf')
legal_moves = game.get_legal_moves(player)
opponent_moves = game.get_legal_moves(game.get_opponent(player))
num_lm = len(legal_moves)
num_om = len(opponent_moves)
#Overlapping moves
overlaps = [ g for g in legal_moves if g in opponent_moves ]
om = 1
if overlaps:
om *= len(overlaps)
#if there is only 1 move left for the opponent, and our move overlaps with it, it is a winning move
if num_om == 1:
return float('inf')
#Increase the score by the number of overlaps
return om + float(num_lm) - 2 * float(num_om)
def custom_score_2(game, player):
# print("Custom score 2 used")
"""Calculate the heuristic value of a game state from the point of view
of the given player.
Note: this function should be called from within a Player instance as
`self.score()` -- you should not need to call this function directly.
Parameters
----------
game : `isolation.Board`
An instance of `isolation.Board` encoding the current state of the
game (e.g., player locations and blocked cells).
player : object
A player instance in the current game (i.e., an object corresponding to
one of the player objects `game.__player_1__` or `game.__player_2__`.)
Returns
-------
float
The heuristic value of the current game state to the specified player.
"""
# TODO: finish this function!
if game.is_loser(player):
return float('-inf')
if game.is_winner(player):
return float('inf')
legal_moves = game.get_legal_moves(player)
opponent_moves = game.get_legal_moves(game.get_opponent(player))
num_om = len(opponent_moves)
total_sq_dist = 0
for row,c in opponent_moves:
dist_from_center = ( row - (game.height -1) /2 , c - (game.width-1)/2 )
sq_dist = pow(dist_from_center[0],2) + pow(dist_from_center[1],2)
total_sq_dist += sq_dist
avg_opp_sq_dist_from_center = int(total_sq_dist / num_om) if num_om != 0 else 0
return float(len(legal_moves)) + avg_opp_sq_dist_from_center - 2 * float(num_om)
def custom_score_3(game, player):
"""Calculate the heuristic value of a game state from the point of view
of the given player.
Note: this function should be called from within a Player instance as
`self.score()` -- you should not need to call this function directly.
Parameters
----------
game : `isolation.Board`
An instance of `isolation.Board` encoding the current state of the
game (e.g., player locations and blocked cells).
player : object
A player instance in the current game (i.e., an object corresponding to
one of the player objects `game.__player_1__` or `game.__player_2__`.)
Returns
-------
float
The heuristic value of the current game state to the specified player.
"""
if game.is_loser(player):
return float('-inf')
if game.is_winner(player):
return float('inf')
legal_moves = game.get_legal_moves(player)
opponent_moves = game.get_legal_moves(game.get_opponent(player))
num_om = len(opponent_moves)
#Produce a score that is higher when the oponent moves are closer to the edge,
#in other words, if more opponent moves are further from the center (3,3) , produce a higher score
total_sq_dist = 0
for row,c in opponent_moves:
dist_from_center = ( row - (game.height -1) /2 , c - (game.width-1)/2 )
sq_dist = pow(dist_from_center[0],2) + pow(dist_from_center[1],2)
total_sq_dist += sq_dist
avg_opp_sq_dist_from_center = int(total_sq_dist / num_om) if num_om != 0 else 0
#Overlapping moves
overlaps = [ g for g in legal_moves if g in opponent_moves ]
#Chase opponent by choosing moves that overlaps with the opponent's move
om = 1
if overlaps:
om = len(overlaps)
if num_om == 1:
#If opponent have only 1 move left and that overlaps with your move, that's your winning move
return float('inf')
return om + float(len(legal_moves)) + avg_opp_sq_dist_from_center - 2*float(num_om)
class IsolationPlayer:
"""Base class for minimax and alphabeta agents -- this class is never
constructed or tested directly.
******************** DO NOT MODIFY THIS CLASS ********************
Parameters
----------
search_depth : int (optional)
A strictly positive integer (i.e., 1, 2, 3,...) for the number of
layers in the game tree to explore for fixed-depth search. (i.e., a
depth of one (1) would only explore the immediate sucessors of the
current state.)
score_fn : callable (optional)
A function to use for heuristic evaluation of game states.
timeout : float (optional)
Time remaining (in milliseconds) when search is aborted. Should be a
positive value large enough to allow the function to return before the
timer expires.
"""
def __init__(self, search_depth=3, score_fn=custom_score, timeout=10.):
self.search_depth = search_depth
self.score = score_fn
self.time_left = None
self.TIMER_THRESHOLD = timeout
class MinimaxPlayer(IsolationPlayer):
"""Game-playing agent that chooses a move using depth-limited minimax
search. You must finish and test this player to make sure it properly uses
minimax to return a good move before the search time limit expires.
"""
# def score(self,game,player):
#
# return custom_score_3(game,player)
def get_move(self, game, time_left):
"""Search for the best move from the available legal moves and return a
result before the time limit expires.
************** YOU DO NOT NEED TO MODIFY THIS FUNCTION *************
For fixed-depth search, this function simply wraps the call to the
minimax method, but this method provides a common interface for all
Isolation agents, and you will replace it in the AlphaBetaPlayer with
iterative deepening search.
Parameters
----------
game : `isolation.Board`
An instance of `isolation.Board` encoding the current state of the
game (e.g., player locations and blocked cells).
time_left : callable
A function that returns the number of milliseconds left in the
current turn. Returning with any less than 0 ms remaining forfeits
the game.
Returns
-------
(int, int)
Board coordinates corresponding to a legal move; may return
(-1, -1) if there are no available legal moves.
"""
self.time_left = time_left
# Initialize the best move so that this function returns something
# in case the search fails due to timeout
best_move = (-1, -1)
try:
# The try/except block will automatically catch the exception
# raised when the timer is about to expire.
return self.minimax(game, self.search_depth)
except SearchTimeout:
pass # Handle any actions required after timeout as needed
# Return the best move from the last completed search iteration
return best_move
def minimax(self, game, depth):
"""Implement depth-limited minimax search algorithm as described in
the lectures.
This should be a modified version of MINIMAX-DECISION in the AIMA text.
https://github.com/aimacode/aima-pseudocode/blob/master/md/Minimax-Decision.md
**********************************************************************
You MAY add additional methods to this class, or define helper
functions to implement the required functionality.
**********************************************************************
Parameters
----------
game : isolation.Board
An instance of the Isolation game `Board` class representing the
current game state
depth : int
Depth is an integer representing the maximum number of plies to
search in the game tree before aborting
Returns
-------
(int, int)
The board coordinates of the best move found in the current search;
(-1, -1) if there are no legal moves
Notes
-----
(1) You MUST use the `self.score()` method for board evaluation
to pass the project tests; you cannot call any other evaluation
function directly.
(2) If you use any helper functions (e.g., as shown in the AIMA
pseudocode) then you must copy the timer check into the top of
each helper function or else your agent will timeout during
testing.
"""
if self.time_left() < self.TIMER_THRESHOLD:
raise SearchTimeout()
bestMove = (-1,-1)
bestValue = float('-inf')
forecast_moves = game.get_legal_moves(self)
if not forecast_moves:
return bestMove
for forecast_move in forecast_moves:
value = self.min_value(game.forecast_move(forecast_move),depth-1)
if value > bestValue:
bestValue = value
bestMove = forecast_move
return bestMove
# return random.choice(game.get_legal_moves())
#Test 1
def max_value(self,game,depth):
if self.time_left() < self.TIMER_THRESHOLD:
raise SearchTimeout()
#terminal check
if depth==0 or game.utility(game.inactive_player) != 0.:
#Reached terminal state
return self.score(game,self)
bestValue = float('-inf')
for forecast_move in game.get_legal_moves(self):
value = self.min_value(game.forecast_move(forecast_move), depth-1)
if value > bestValue:
bestValue = value
return bestValue
def min_value(self,game,depth):
if self.time_left() < self.TIMER_THRESHOLD:
raise SearchTimeout()
#terminal check
if depth==0 or game.utility(game.inactive_player) != 0.:
#Reached terminal state
return self.score(game,self)
minValue = float('inf')
for forecast_move in game.get_legal_moves(game.get_opponent(self)):
value = self.max_value(game.forecast_move(forecast_move),depth-1)
if value < minValue:
minValue = value
return minValue
class AlphaBetaPlayer(IsolationPlayer):
"""Game-playing agent that chooses a move using iterative deepening minimax
search with alpha-beta pruning. You must finish and test this player to
make sure it returns a good move before the search time limit expires.
"""
def get_move(self, game, time_left):
"""Search for the best move from the available legal moves and return a
result before the time limit expires.
Modify the get_move() method from the MinimaxPlayer class to implement
iterative deepening search instead of fixed-depth search.
**********************************************************************
NOTE: If time_left() < 0 when this function returns, the agent will
forfeit the game due to timeout. You must return _before_ the
timer reaches 0.
**********************************************************************
Parameters
----------
game : `isolation.Board`
An instance of `isolation.Board` encoding the current state of the
game (e.g., player locations and blocked cells).
time_left : callable
A function that returns the number of milliseconds left in the
current turn. Returning with any less than 0 ms remaining forfeits
the game.
Returns
-------
(int, int)
Board coordinates corresponding to a legal move; may return
(-1, -1) if there are no available legal moves.
"""
self.time_left = time_left
# TODO: finish this function!
best_move = (-1, -1)
try:
# The try/except block will automatically catch the exception
# raised when the timer is about to expire.
#Implement iterative deepening
depth = 1
while True:
best_move = self.alphabeta(game, depth)
depth += 1
except SearchTimeout:
# Handle any actions required after timeout as needed
return best_move
# Return the best move from the last completed search iteration
return best_move
def minimax(self, game, depth):
"""Implement depth-limited minimax search algorithm as described in
the lectures.
This should be a modified version of MINIMAX-DECISION in the AIMA text.
https://github.com/aimacode/aima-pseudocode/blob/master/md/Minimax-Decision.md
**********************************************************************
You MAY add additional methods to this class, or define helper
functions to implement the required functionality.
**********************************************************************
Parameters
----------
game : isolation.Board
An instance of the Isolation game `Board` class representing the
current game state
depth : int
Depth is an integer representing the maximum number of plies to
search in the game tree before aborting
Returns
-------
(int, int)
The board coordinates of the best move found in the current search;
(-1, -1) if there are no legal moves
Notes
-----
(1) You MUST use the `self.score()` method for board evaluation
to pass the project tests; you cannot call any other evaluation
function directly.
(2) If you use any helper functions (e.g., as shown in the AIMA
pseudocode) then you must copy the timer check into the top of
each helper function or else your agent will timeout during
testing.
"""
if self.time_left() < self.TIMER_THRESHOLD:
raise SearchTimeout()
bestMove = (-1,-1)
bestValue = float('-inf')
forecast_moves = game.get_legal_moves(self)
if not forecast_moves:
return bestMove
for forecast_move in forecast_moves:
value = self.min_value(game.forecast_move(forecast_move,float('-inf'),float('inf')),depth-1)
if value > bestValue:
bestValue = value
bestMove = forecast_move
return bestMove
def alphabeta(self, game, depth, alpha=float("-inf"), beta=float("inf")):
"""Implement depth-limited minimax search with alpha-beta pruning as
described in the lectures.
This should be a modified version of ALPHA-BETA-SEARCH in the AIMA text
https://github.com/aimacode/aima-pseudocode/blob/master/md/Alpha-Beta-Search.md
**********************************************************************
You MAY add additional methods to this class, or define helper
functions to implement the required functionality.
**********************************************************************
Parameters
----------
game : isolation.Board
An instance of the Isolation game `Board` class representing the
current game state
depth : int
Depth is an integer representing the maximum number of plies to
search in the game tree before aborting
alpha : float
Alpha limits the lower bound of search on minimizing layers
beta : float
Beta limits the upper bound of search on maximizing layers
Returns
-------
(int, int)
The board coordinates of the best move found in the current search;
(-1, -1) if there are no legal moves
Notes
-----
(1) You MUST use the `self.score()` method for board evaluation
to pass the project tests; you cannot call any other evaluation
function directly.
(2) If you use any helper functions (e.g., as shown in the AIMA
pseudocode) then you must copy the timer check into the top of
each helper function or else your agent will timeout during
testing.
"""
if self.time_left() < self.TIMER_THRESHOLD:
raise SearchTimeout()
#define initial bestMove
bestMove = (-1,-1)
my_forecast_moves = game.get_legal_moves(self)
if not my_forecast_moves:
return bestMove
#There are moves left for me
#Can't do pruning at the root of the tree
for move in my_forecast_moves:
value = self.min_value(game.forecast_move(move), depth -1,alpha,beta)
if value > alpha:
alpha = value
bestMove = move
#
# if value > bestScore:
# bestScore = value
# bestMove = move
#
return bestMove
def min_value(self,game,depth,alpha,beta):
if self.time_left() < self.TIMER_THRESHOLD:
raise SearchTimeout()
if depth == 0 or game.utility(game.active_player) != 0.:
return self.score(game,self)
minValue = float('inf')
for opponent_move in game.get_legal_moves(game.get_opponent(self)):
value = self.max_value(game.forecast_move(opponent_move), depth-1, alpha,beta)
# Beta = Minimum upper bound, can only go lower
if value < minValue:
minValue = value
if alpha >= value:
#Prune tree by returning immediately
return value
#Set beta to the new lowest state and pass beta value to next sibling in the loop
beta = min(beta, value)
return minValue
def max_value(self,game,depth,alpha,beta):
if self.time_left() < self.TIMER_THRESHOLD:
raise SearchTimeout()
if depth == 0 or game.utility(game.active_player) != 0.:
return self.score(game,self)
maxValue = float('-inf')
for my_move in game.get_legal_moves(self):
value = self.min_value(game.forecast_move(my_move), depth-1, alpha, beta)
if value > maxValue:
maxValue = value
if value >= beta:
#Prune
return value
alpha = max(alpha, value)
return maxValue