-
Notifications
You must be signed in to change notification settings - Fork 6
/
traits.hpp
314 lines (258 loc) · 9.11 KB
/
traits.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
//--------------------------------------
// utils/traits: Additional type traits
//--------------------------------------
//
// Copyright kennytm (auraHT Ltd.) 2011.
// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file doc/LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
/**
``<utils/traits.hpp>`` --- Additional type traits
=================================================
This module provides additional type traits and related functions, missing from
the standard library.
*/
#ifndef TRAITS_HPP_9ALQFEFX7TO
#define TRAITS_HPP_9ALQFEFX7TO 1
#include <cstdlib>
#include <tuple>
#include <functional>
#include <type_traits>
namespace utils {
/**
.. macro:: DECLARE_HAS_TYPE_MEMBER(member_name)
This macro declares a template ``has_member_name`` which will check whether
a type member ``member_name`` exists in a particular type.
Example::
DECLARE_HAS_TYPE_MEMBER(result_type)
...
printf("%d\n", has_result_type< std::plus<int> >::value);
// ^ prints '1' (true)
printf("%d\n", has_result_type< double(*)() >::value);
// ^ prints '0' (false)
*/
#define DECLARE_HAS_TYPE_MEMBER(member_name) \
template <typename, typename = void> \
struct has_##member_name \
{ enum { value = false }; }; \
template <typename T> \
struct has_##member_name<T, typename std::enable_if<sizeof(typename T::member_name)||true>::type> \
{ enum { value = true }; };
/**
.. type:: struct utils::function_traits<F>
Obtain compile-time information about a function object *F*.
This template currently supports the following types:
* Normal function types (``R(T...)``), function pointers (``R(*)(T...)``)
and function references (``R(&)(T...)`` and ``R(&&)(T...)``).
* Member functions (``R(C::*)(T...)``)
* ``std::function<F>``
* Type of lambda functions, and any other types that has a unique
``operator()``.
* Type of ``std::mem_fn`` (only for GCC's libstdc++ and LLVM's libc++).
Following the C++ spec, the first argument will be a raw pointer.
*/
template <typename T>
struct function_traits
: public function_traits<decltype(&T::operator())>
{};
namespace xx_impl
{
template <typename C, typename R, typename... A>
struct memfn_type
{
typedef typename std::conditional<
std::is_const<C>::value,
typename std::conditional<
std::is_volatile<C>::value,
R (C::*)(A...) const volatile,
R (C::*)(A...) const
>::type,
typename std::conditional<
std::is_volatile<C>::value,
R (C::*)(A...) volatile,
R (C::*)(A...)
>::type
>::type type;
};
}
template <typename ReturnType, typename... Args>
struct function_traits<ReturnType(Args...)>
{
/**
.. type:: type result_type
The type returned by calling an instance of the function object type *F*.
*/
typedef ReturnType result_type;
/**
.. type:: type function_type
The function type (``R(T...)``).
*/
typedef ReturnType function_type(Args...);
/**
.. type:: type member_function_type<OwnerType>
The member function type for an *OwnerType* (``R(OwnerType::*)(T...)``).
*/
template <typename OwnerType>
using member_function_type = typename xx_impl::memfn_type<
typename std::remove_pointer<typename std::remove_reference<OwnerType>::type>::type,
ReturnType, Args...
>::type;
/**
.. data:: static const size_t arity
Number of arguments the function object will take.
*/
enum { arity = sizeof...(Args) };
/**
.. type:: type arg<n>::type
The type of the *n*-th argument.
*/
template <size_t i>
struct arg
{
typedef typename std::tuple_element<i, std::tuple<Args...>>::type type;
};
};
template <typename ReturnType, typename... Args>
struct function_traits<ReturnType(*)(Args...)>
: public function_traits<ReturnType(Args...)>
{};
template <typename ClassType, typename ReturnType, typename... Args>
struct function_traits<ReturnType(ClassType::*)(Args...)>
: public function_traits<ReturnType(Args...)>
{
typedef ClassType& owner_type;
};
template <typename ClassType, typename ReturnType, typename... Args>
struct function_traits<ReturnType(ClassType::*)(Args...) const>
: public function_traits<ReturnType(Args...)>
{
typedef const ClassType& owner_type;
};
template <typename ClassType, typename ReturnType, typename... Args>
struct function_traits<ReturnType(ClassType::*)(Args...) volatile>
: public function_traits<ReturnType(Args...)>
{
typedef volatile ClassType& owner_type;
};
template <typename ClassType, typename ReturnType, typename... Args>
struct function_traits<ReturnType(ClassType::*)(Args...) const volatile>
: public function_traits<ReturnType(Args...)>
{
typedef const volatile ClassType& owner_type;
};
template <typename FunctionType>
struct function_traits<std::function<FunctionType>>
: public function_traits<FunctionType>
{};
#if defined(_GLIBCXX_FUNCTIONAL)
#define MEM_FN_SYMBOL_XX0SL7G4Z0J std::_Mem_fn
#elif defined(_LIBCPP_FUNCTIONAL)
#define MEM_FN_SYMBOL_XX0SL7G4Z0J std::__mem_fn
#endif
#ifdef MEM_FN_SYMBOL_XX0SL7G4Z0J
template <typename R, typename C>
struct function_traits<MEM_FN_SYMBOL_XX0SL7G4Z0J<R C::*>>
: public function_traits<R(C*)>
{};
template <typename R, typename C, typename... A>
struct function_traits<MEM_FN_SYMBOL_XX0SL7G4Z0J<R(C::*)(A...)>>
: public function_traits<R(C*, A...)>
{};
template <typename R, typename C, typename... A>
struct function_traits<MEM_FN_SYMBOL_XX0SL7G4Z0J<R(C::*)(A...) const>>
: public function_traits<R(const C*, A...)>
{};
template <typename R, typename C, typename... A>
struct function_traits<MEM_FN_SYMBOL_XX0SL7G4Z0J<R(C::*)(A...) volatile>>
: public function_traits<R(volatile C*, A...)>
{};
template <typename R, typename C, typename... A>
struct function_traits<MEM_FN_SYMBOL_XX0SL7G4Z0J<R(C::*)(A...) const volatile>>
: public function_traits<R(const volatile C*, A...)>
{};
#undef MEM_FN_SYMBOL_XX0SL7G4Z0J
#endif
template <typename T>
struct function_traits<T&> : public function_traits<T> {};
template <typename T>
struct function_traits<const T&> : public function_traits<T> {};
template <typename T>
struct function_traits<volatile T&> : public function_traits<T> {};
template <typename T>
struct function_traits<const volatile T&> : public function_traits<T> {};
template <typename T>
struct function_traits<T&&> : public function_traits<T> {};
template <typename T>
struct function_traits<const T&&> : public function_traits<T> {};
template <typename T>
struct function_traits<volatile T&&> : public function_traits<T> {};
template <typename T>
struct function_traits<const volatile T&&> : public function_traits<T> {};
#define FORWARD_RES_8QR485JMSBT \
typename std::conditional< \
std::is_lvalue_reference<R>::value, \
T&, \
typename std::remove_reference<T>::type&& \
>::type
/**
.. function:: auto utils::forward_like<Like, T>(T&& t) noexcept
Forward the reference *t* like the type of *Like*. That means, if *Like* is
an lvalue (reference), this function will return an lvalue reference of *t*.
Otherwise, if *Like* is an rvalue, this function will return an rvalue
reference of *t*.
This is mainly used to propagate the expression category (lvalue/rvalue) of
a member of *Like*, generalizing ``std::forward``.
*/
template <typename R, typename T>
FORWARD_RES_8QR485JMSBT forward_like(T&& input) noexcept
{
return static_cast<FORWARD_RES_8QR485JMSBT>(input);
}
#undef FORWARD_RES_8QR485JMSBT
/**
.. type:: struct utils::copy_cv<From, To>
Copy the CV qualifier between the two types. For example,
``utils::copy_cv<const int, double>::type`` will become ``const double``.
*/
template <typename From, typename To>
struct copy_cv
{
private:
typedef typename std::remove_cv<To>::type raw_To;
typedef typename std::conditional<std::is_const<From>::value,
const raw_To, raw_To>::type const_raw_To;
public:
/**
.. type:: type type
Result of cv-copying.
*/
typedef typename std::conditional<std::is_volatile<From>::value,
volatile const_raw_To, const_raw_To>::type type;
};
/**
.. type:: struct utils::pointee<T>
Returns the type by derefering an instance of *T*. This is a generalization
of ``std::remove_pointer``, that it also works with iterators.
*/
template <typename T>
struct pointee
{
/**
.. type:: type type
Result of dereferencing.
*/
typedef typename std::remove_reference<decltype(*std::declval<T>())>::type type;
};
/**
.. function:: std::add_rvalue_reference<T>::type utils::rt_val<T>() noexcept
Returns a value of type *T*. It is guaranteed to do nothing and will not
throw a compile-time error, but using the returned result will cause
undefined behavior.
*/
template <typename T>
typename std::add_rvalue_reference<T>::type rt_val() noexcept
{
return std::move(*static_cast<T*>(nullptr));
}
}
#endif