Skip to content

Latest commit

 

History

History
 
 

tf_example5

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 

tf_example5 example

This example is used to demonstrate how to config benchmark in yaml for performance measurement.

  1. Download the FP32 model wget https://storage.googleapis.com/intel-optimized-tensorflow/models/v1_6/mobilenet_v1_1.0_224_frozen.pb

  2. Update the root of dataset in conf.yaml The configuration will will create a TopK metric function for evaluation and configure the batch size, instance number and core number for performance measurement.

evaluation:                                          # optional. required if user doesn't provide eval_func in Quantization.
 accuracy:                                           # optional. required if user doesn't provide eval_func in Quantization.
    metric:
      topk: 1                                        # built-in metrics are topk, map, f1, allow user to register new metric.
    dataloader:
      batch_size: 32 
      dataset:
        ImageRecord:
          root: /path/to/imagenet/                   # NOTE: modify to evaluation dataset location if needed
      transform:
        BilinearImagenet: 
          height: 224
          width: 224

 performance:                                        # optional. used to benchmark performance of passing model.
    configs:
      cores_per_instance: 4
      num_of_instance: 7
    dataloader:
      batch_size: 1 
      last_batch: discard 
      dataset:
        ImageRecord:
          root: /path/to/imagenet/                   # NOTE: modify to evaluation dataset location if needed
      transform:
        ResizeCropImagenet: 
          height: 224
          width: 224
          mean_value: [123.68, 116.78, 103.94]
  1. Run quantization We only need to add the following lines for quantization to create an int8 model.
    from neural_compressor.experimental import Quantization, common
    quantizer = Quantization('./conf.yaml')
    quantizer.model = common.Model('./mobilenet_v1_1.0_224_frozen.pb')
    quantized_model = quantizer()
    quantized_model.save('./int8.pb')
  • Run quantization and evaluation:
    python test.py --tune
  1. Run benchmark according to config
    from neural_compressor.experimental import Quantization,  Benchmark, common
    evaluator = Benchmark('./conf.yaml')
    evaluator.model = common.Model('./int8.pb')
    results = evaluator()
 
  • Run benchmark, please make sure benchmark the model should after tuning:
    python test.py --benchmark