-
Notifications
You must be signed in to change notification settings - Fork 3
/
gnn_heterogenous_conv_static.py
49 lines (43 loc) · 1.75 KB
/
gnn_heterogenous_conv_static.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import sys
import torch
import torch_geometric
from torch_geometric.datasets import FakeHeteroDataset
from torch_geometric.nn import GraphConv, HeteroConv
import torch.nn.functional as F
from execution import runner
criterion = torch.nn.CrossEntropyLoss()
torch_geometric.seed.seed_everything(42)
frozen_data = FakeHeteroDataset(avg_num_nodes=20000).generate_data()
labeled_node_type = list(frozen_data.collect('y').keys())[0] # should only be one labeled node type
num_classes = torch.numel(torch.unique(frozen_data[labeled_node_type].y))
frozen_data.labeled_node_type = labeled_node_type
h_size = 32
print(frozen_data)
def optim_func(params) :
return torch.optim.SGD(params, lr=0.01)
def input_func(steps, dtype, device):
return [frozen_data.to(device) for _ in range(steps)]
class TestModule(torch.nn.Module) :
def __init__(self) :
super(TestModule, self).__init__()
in_feat = {node_type:frozen_data[node_type].x.shape[-1] for node_type in frozen_data.node_types}
self.conv1 = HeteroConv(
{
rel: GraphConv((in_feat[rel[0]], in_feat[rel[-1]]), h_size)
for rel in frozen_data.edge_types
}
)
self.conv2 = HeteroConv(
{
rel: GraphConv(h_size, num_classes)
for rel in frozen_data.edge_types
}
)
def forward(self, x_dict, edge_index_dict, y):
x_dict = (self.conv1(x_dict, edge_index_dict))
for key in x_dict.keys():
x_dict[key] = F.relu(x_dict[key])
x_dict = self.conv2(x_dict, edge_index_dict)
return [criterion(x_dict[labeled_node_type], y)]
if __name__ == "__main__" :
runner.run(sys.argv, 'Heterogenous_GNN_Conv_static', TestModule(), optim_func, input_func, None)