forked from graphdeco-inria/hierarchical-3d-gaussians
-
Notifications
You must be signed in to change notification settings - Fork 0
/
render_hierarchy.py
141 lines (118 loc) · 5.27 KB
/
render_hierarchy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
#
# Copyright (C) 2023 - 2024, Inria
# GRAPHDECO research group, https://team.inria.fr/graphdeco
# All rights reserved.
#
# This software is free for non-commercial, research and evaluation use
# under the terms of the LICENSE.md file.
#
# For inquiries contact george.drettakis@inria.fr
#
import math
import os
import torch
from random import randint
from utils.loss_utils import ssim
from gaussian_renderer import render_post
import sys
from scene import Scene, GaussianModel
from tqdm import tqdm
from utils.image_utils import psnr
from argparse import ArgumentParser
from arguments import ModelParams, PipelineParams, OptimizationParams
import torchvision
from lpipsPyTorch import lpips
from gaussian_hierarchy._C import expand_to_size, get_interpolation_weights
def direct_collate(x):
return x
@torch.no_grad()
def render_set(args, scene, pipe, out_dir, tau, eval):
render_path = out_dir
render_indices = torch.zeros(scene.gaussians._xyz.size(0), dtype=torch.int, device="cuda")
parent_indices = torch.zeros(scene.gaussians._xyz.size(0), dtype=torch.int, device="cuda")
nodes_for_render_indices = torch.zeros(scene.gaussians._xyz.size(0), dtype=torch.int, device="cuda")
interpolation_weights = torch.zeros(scene.gaussians._xyz.size(0), dtype=torch.float, device="cuda")
num_siblings = torch.zeros(scene.gaussians._xyz.size(0), dtype=torch.int, device="cuda")
psnr_test = 0.0
ssims = 0.0
lpipss = 0.0
cameras = scene.getTestCameras() if eval else scene.getTrainCameras()
for viewpoint in tqdm(cameras):
viewpoint=viewpoint
viewpoint.world_view_transform = viewpoint.world_view_transform.cuda()
viewpoint.projection_matrix = viewpoint.projection_matrix.cuda()
viewpoint.full_proj_transform = viewpoint.full_proj_transform.cuda()
viewpoint.camera_center = viewpoint.camera_center.cuda()
tanfovx = math.tan(viewpoint.FoVx * 0.5)
threshold = (2 * (tau + 0.5)) * tanfovx / (0.5 * viewpoint.image_width)
to_render = expand_to_size(
scene.gaussians.nodes,
scene.gaussians.boxes,
threshold,
viewpoint.camera_center,
torch.zeros((3)),
render_indices,
parent_indices,
nodes_for_render_indices)
indices = render_indices[:to_render].int().contiguous()
node_indices = nodes_for_render_indices[:to_render].contiguous()
get_interpolation_weights(
node_indices,
threshold,
scene.gaussians.nodes,
scene.gaussians.boxes,
viewpoint.camera_center.cpu(),
torch.zeros((3)),
interpolation_weights,
num_siblings
)
image = torch.clamp(render_post(
viewpoint,
scene.gaussians,
pipe,
torch.tensor([0.0, 0.0, 0.0], dtype=torch.float32, device="cuda"),
render_indices=indices,
parent_indices = parent_indices,
interpolation_weights = interpolation_weights,
num_node_kids = num_siblings,
use_trained_exp=args.train_test_exp
)["render"], 0.0, 1.0)
gt_image = torch.clamp(viewpoint.original_image.to("cuda"), 0.0, 1.0)
alpha_mask = viewpoint.alpha_mask.cuda()
if args.train_test_exp:
image = image[..., image.shape[-1] // 2:]
gt_image = gt_image[..., gt_image.shape[-1] // 2:]
alpha_mask = alpha_mask[..., alpha_mask.shape[-1] // 2:]
try:
torchvision.utils.save_image(image, os.path.join(render_path, viewpoint.image_name.split(".")[0] + ".png"))
except:
os.makedirs(os.path.dirname(os.path.join(render_path, viewpoint.image_name.split(".")[0] + ".png")), exist_ok=True)
torchvision.utils.save_image(image, os.path.join(render_path, viewpoint.image_name.split(".")[0] + ".png"))
if eval:
image *= alpha_mask
gt_image *= alpha_mask
psnr_test += psnr(image, gt_image).mean().double()
ssims += ssim(image, gt_image).mean().double()
lpipss += lpips(image, gt_image, net_type='vgg').mean().double()
torch.cuda.empty_cache()
if eval and len(scene.getTestCameras()) > 0:
psnr_test /= len(scene.getTestCameras())
ssims /= len(scene.getTestCameras())
lpipss /= len(scene.getTestCameras())
print(f"tau: {tau}, PSNR: {psnr_test:.5f} SSIM: {ssims:.5f} LPIPS: {lpipss:.5f}")
if __name__ == "__main__":
# Set up command line argument parser
parser = ArgumentParser(description="Rendering script parameters")
lp = ModelParams(parser)
op = OptimizationParams(parser)
pp = PipelineParams(parser)
parser.add_argument('--out_dir', type=str, default="")
parser.add_argument("--taus", nargs="+", type=float, default=[0.0, 3.0, 6.0, 15.0])
args = parser.parse_args(sys.argv[1:])
print("Rendering " + args.model_path)
dataset, pipe = lp.extract(args), pp.extract(args)
gaussians = GaussianModel(dataset.sh_degree)
gaussians.active_sh_degree = dataset.sh_degree
scene = Scene(dataset, gaussians, resolution_scales = [1], create_from_hier=True)
for tau in args.taus:
render_set(args, scene, pipe, os.path.join(args.out_dir, f"render_{tau}"), tau, args.eval)