-
Notifications
You must be signed in to change notification settings - Fork 88
/
Copy pathencoder.py
208 lines (169 loc) · 9.31 KB
/
encoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
# Copyright (c) ByteDance, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import torch
import torch.nn as nn
from timm.models.layers import DropPath
_cur_active: torch.Tensor = None # B1ff
# todo: try to use `gather` for speed?
def _get_active_ex_or_ii(H, W, returning_active_ex=True):
h_repeat, w_repeat = H // _cur_active.shape[-2], W // _cur_active.shape[-1]
active_ex = _cur_active.repeat_interleave(h_repeat, dim=2).repeat_interleave(w_repeat, dim=3)
return active_ex if returning_active_ex else active_ex.squeeze(1).nonzero(as_tuple=True) # ii: bi, hi, wi
def sp_conv_forward(self, x: torch.Tensor):
x = super(type(self), self).forward(x)
x *= _get_active_ex_or_ii(H=x.shape[2], W=x.shape[3], returning_active_ex=True) # (BCHW) *= (B1HW), mask the output of conv
return x
def sp_bn_forward(self, x: torch.Tensor):
ii = _get_active_ex_or_ii(H=x.shape[2], W=x.shape[3], returning_active_ex=False)
bhwc = x.permute(0, 2, 3, 1)
nc = bhwc[ii] # select the features on non-masked positions to form a flatten feature `nc`
nc = super(type(self), self).forward(nc) # use BN1d to normalize this flatten feature `nc`
bchw = torch.zeros_like(bhwc)
bchw[ii] = nc
bchw = bchw.permute(0, 3, 1, 2)
return bchw
class SparseConv2d(nn.Conv2d):
forward = sp_conv_forward # hack: override the forward function; see `sp_conv_forward` above for more details
class SparseMaxPooling(nn.MaxPool2d):
forward = sp_conv_forward # hack: override the forward function; see `sp_conv_forward` above for more details
class SparseAvgPooling(nn.AvgPool2d):
forward = sp_conv_forward # hack: override the forward function; see `sp_conv_forward` above for more details
class SparseBatchNorm2d(nn.BatchNorm1d):
forward = sp_bn_forward # hack: override the forward function; see `sp_bn_forward` above for more details
class SparseSyncBatchNorm2d(nn.SyncBatchNorm):
forward = sp_bn_forward # hack: override the forward function; see `sp_bn_forward` above for more details
class SparseConvNeXtLayerNorm(nn.LayerNorm):
r""" LayerNorm that supports two data formats: channels_last (default) or channels_first.
The ordering of the dimensions in the inputs. channels_last corresponds to inputs with
shape (batch_size, height, width, channels) while channels_first corresponds to inputs
with shape (batch_size, channels, height, width).
"""
def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last", sparse=True):
if data_format not in ["channels_last", "channels_first"]:
raise NotImplementedError
super().__init__(normalized_shape, eps, elementwise_affine=True)
self.data_format = data_format
self.sparse = sparse
def forward(self, x):
if x.ndim == 4: # BHWC or BCHW
if self.data_format == "channels_last": # BHWC
if self.sparse:
ii = _get_active_ex_or_ii(H=x.shape[1], W=x.shape[2], returning_active_ex=False)
nc = x[ii]
nc = super(SparseConvNeXtLayerNorm, self).forward(nc)
x = torch.zeros_like(x)
x[ii] = nc
return x
else:
return super(SparseConvNeXtLayerNorm, self).forward(x)
else: # channels_first, BCHW
if self.sparse:
ii = _get_active_ex_or_ii(H=x.shape[2], W=x.shape[3], returning_active_ex=False)
bhwc = x.permute(0, 2, 3, 1)
nc = bhwc[ii]
nc = super(SparseConvNeXtLayerNorm, self).forward(nc)
x = torch.zeros_like(bhwc)
x[ii] = nc
return x.permute(0, 3, 1, 2)
else:
u = x.mean(1, keepdim=True)
s = (x - u).pow(2).mean(1, keepdim=True)
x = (x - u) / torch.sqrt(s + self.eps)
x = self.weight[:, None, None] * x + self.bias[:, None, None]
return x
else: # BLC or BC
if self.sparse:
raise NotImplementedError
else:
return super(SparseConvNeXtLayerNorm, self).forward(x)
def __repr__(self):
return super(SparseConvNeXtLayerNorm, self).__repr__()[:-1] + f', ch={self.data_format.split("_")[-1]}, sp={self.sparse})'
class SparseConvNeXtBlock(nn.Module):
r""" ConvNeXt Block. There are two equivalent implementations:
(1) DwConv -> LayerNorm (channels_first) -> 1x1 Conv -> GELU -> 1x1 Conv; all in (N, C, H, W)
(2) DwConv -> Permute to (N, H, W, C); LayerNorm (channels_last) -> Linear -> GELU -> Linear; Permute back
We use (2) as we find it slightly faster in PyTorch
Args:
dim (int): Number of input channels.
drop_path (float): Stochastic depth rate. Default: 0.0
layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6.
"""
def __init__(self, dim, drop_path=0., layer_scale_init_value=1e-6, sparse=True, ks=7):
super().__init__()
self.dwconv = nn.Conv2d(dim, dim, kernel_size=ks, padding=ks//2, groups=dim) # depthwise conv
self.norm = SparseConvNeXtLayerNorm(dim, eps=1e-6, sparse=sparse)
self.pwconv1 = nn.Linear(dim, 4 * dim) # pointwise/1x1 convs, implemented with linear layers
self.act = nn.GELU()
self.pwconv2 = nn.Linear(4 * dim, dim)
self.gamma = nn.Parameter(layer_scale_init_value * torch.ones((dim)),
requires_grad=True) if layer_scale_init_value > 0 else None
self.drop_path: nn.Module = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.sparse = sparse
def forward(self, x):
input = x
x = self.dwconv(x)
x = x.permute(0, 2, 3, 1) # (N, C, H, W) -> (N, H, W, C)
x = self.norm(x)
x = self.pwconv1(x)
x = self.act(x) # GELU(0) == (0), so there is no need to mask x (no need to `x *= _get_active_ex_or_ii`)
x = self.pwconv2(x)
if self.gamma is not None:
x = self.gamma * x
x = x.permute(0, 3, 1, 2) # (N, H, W, C) -> (N, C, H, W)
if self.sparse:
x *= _get_active_ex_or_ii(H=x.shape[2], W=x.shape[3], returning_active_ex=True)
x = input + self.drop_path(x)
return x
def __repr__(self):
return super(SparseConvNeXtBlock, self).__repr__()[:-1] + f', sp={self.sparse})'
class SparseEncoder(nn.Module):
def __init__(self, cnn, input_size, sbn=False, verbose=False):
super(SparseEncoder, self).__init__()
self.sp_cnn = SparseEncoder.dense_model_to_sparse(m=cnn, verbose=verbose, sbn=sbn)
self.input_size, self.downsample_raito, self.enc_feat_map_chs = input_size, cnn.get_downsample_ratio(), cnn.get_feature_map_channels()
@staticmethod
def dense_model_to_sparse(m: nn.Module, verbose=False, sbn=False):
oup = m
if isinstance(m, nn.Conv2d):
m: nn.Conv2d
bias = m.bias is not None
oup = SparseConv2d(
m.in_channels, m.out_channels,
kernel_size=m.kernel_size, stride=m.stride, padding=m.padding,
dilation=m.dilation, groups=m.groups, bias=bias, padding_mode=m.padding_mode,
)
oup.weight.data.copy_(m.weight.data)
if bias:
oup.bias.data.copy_(m.bias.data)
elif isinstance(m, nn.MaxPool2d):
m: nn.MaxPool2d
oup = SparseMaxPooling(m.kernel_size, stride=m.stride, padding=m.padding, dilation=m.dilation, return_indices=m.return_indices, ceil_mode=m.ceil_mode)
elif isinstance(m, nn.AvgPool2d):
m: nn.AvgPool2d
oup = SparseAvgPooling(m.kernel_size, m.stride, m.padding, ceil_mode=m.ceil_mode, count_include_pad=m.count_include_pad, divisor_override=m.divisor_override)
elif isinstance(m, (nn.BatchNorm2d, nn.SyncBatchNorm)):
m: nn.BatchNorm2d
oup = (SparseSyncBatchNorm2d if sbn else SparseBatchNorm2d)(m.weight.shape[0], eps=m.eps, momentum=m.momentum, affine=m.affine, track_running_stats=m.track_running_stats)
oup.weight.data.copy_(m.weight.data)
oup.bias.data.copy_(m.bias.data)
oup.running_mean.data.copy_(m.running_mean.data)
oup.running_var.data.copy_(m.running_var.data)
oup.num_batches_tracked.data.copy_(m.num_batches_tracked.data)
if hasattr(m, "qconfig"):
oup.qconfig = m.qconfig
elif isinstance(m, nn.LayerNorm) and not isinstance(m, SparseConvNeXtLayerNorm):
m: nn.LayerNorm
oup = SparseConvNeXtLayerNorm(m.weight.shape[0], eps=m.eps)
oup.weight.data.copy_(m.weight.data)
oup.bias.data.copy_(m.bias.data)
elif isinstance(m, (nn.Conv1d,)):
raise NotImplementedError
for name, child in m.named_children():
oup.add_module(name, SparseEncoder.dense_model_to_sparse(child, verbose=verbose, sbn=sbn))
del m
return oup
def forward(self, x):
return self.sp_cnn(x, hierarchical=True)