sconf is yaml-based simple config library.
- Supports merging multiple configs
- Supports CLI modification by argparse-like interface
- Supports coloring modified key-values
- Supports global access to config objects
$ pip install sconf
from sconf import Config
cfg = Config(default="configs/defaults.yaml")
cfg.argv_update() # apply CLI modification
You can modify cfg
by CLI in the runtime, by argparse-like interface.
import argparse
from sconf import Config
parser = argparse.ArgumentParser()
parser.add_argument("name")
parser.add_argument("config_paths", nargs="*")
parser.add_argument("--show", action="store_true", default=False)
args, left_argv = parser.parse_known_args()
# merging multiple configs if given
cfg = Config(*args.config_paths, default="configs/defaults.yaml")
cfg.argv_update(left_argv)
Run:
python train.py example configs/exp.yaml --lr 0.1
The resulting cfg
is based on configs/defaults.yaml
, merged with configs/exp.yaml
, and updated by --lr 0.1
.
sconf dumps contents with coloring modified items.
print(cfg.dumps())
# If you do not want to colorize:
print(cfg.dumps(modified_color=None))
- Item access with dictionary-like interfaces:
# access
print(cfg['key'])
print(cfg['key1']['key2'])
# get
print(cfg.get('non-key', 'default-value'))
# unpacking
function(**cfg['model'])
- Attribute access:
print(cfg.key)
print(cfg.key1.key2)
- Note that the attribute access returns method object for the duplicated key, unlike the item access.
cfg = Config({'get': 2})
print(cfg['get']) # 2
print(cfg.get) # method object
sconf supports CLI modification like argparse. Also you can access to the child key using dot.
# yaml example
batch_size: 64
model:
encoder:
n_channels: 64
decoder:
n_channels: 64
- CLI modification:
> python train.py --batch_size 128 --model.encoder.n_channels 32
- Accessing via partial key is also available:
> python train.py --encoder.n_channels 32
- Use triple dashs
---
if you want to modify multiple keys:
# modifying encoder.n_channels and decoder.n_channels both.
> python train.py ---n_channels 32
Global access is useful in ML project, even though it can be anti-pattern in SW engineering.
# main.py
cfg = Config({'weight_decay': 0.001}) # first config is automatically registered to 'default' key
# train.py
cfg = Config.get_default() # get 'default' config
print(cfg.weight_decay) # 0.001
Note from_registry
helps global access to multiple configs.
- sconf use utf-8 as a default encoding. If you want different encoding, use file pointer (
open
function) instead of file path as a key.