-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
87 lines (70 loc) · 2.52 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
import config_with_yaml as config
from opts import parser
import numpy as np
import torch
from ops.load_data import load_data
from models.autoencoder import autoencoder
from ops.dataloader import UEDNetDataset
import random
from tqdm import tqdm
args = parser.parse_args()
def main():
global args
print("\n")
print("AutoEncoder Network for Motor deafect detection ")
print("-"*40)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print("Device : ", device)
print("Device Name : ", torch.cuda.get_device_name(0))
print("-"*40)
if args.arch =='autoencoder':
cfg = config.load("config\\autoencoder.yml")
print('=> DB : {}'.format(cfg.getProperty("config.data.name")))
data,in_dim = load_data(cfg.getProperty("config.data.path"))
print('=> AutoEncoder loading...')
model = autoencoder(
in_dim = in_dim,
hidden_size = int(cfg.getProperty("config.model.hidden_size")),
lr = cfg.getProperty("config.model.lr")
).cuda()
batch_size = 16
epochs = 200
Loader = UEDNetDataset(data,batch_size)
print('=> Creating Logfile...')
log = open('./log/train_log.txt','w')
## (1) train step
print('=> Training Start...')
for epoch in range(epochs):
batch_loss = 0.0
for X,Y in tqdm(Loader.loader):
X = X.cuda()
model.optimizer.zero_grad()
y_pred = model(X).cuda()
loss = model.criterion(y_pred, X).cuda()
loss.backward()
model.optimizer.step()
batch_loss +=loss.item()
out = "[epoch {}/{}] ".format(epoch,epochs)+" training loss(L1) :{}".format(batch_loss/batch_size,".3f")+" lr : "+str(model.lr)+"\n"
print(out)
log.write(out)
## (2) output generation step
output = np.zeros([2871,128000])
losses = np.zeros([2871,])
cursor = 0
print('=> Testing Start...')
loss = torch.nn.MSELoss()
for X,Y in tqdm(Loader.loader):
with torch.no_grad():
X = X.cuda()
Y = Y.cuda()
y_pred = model(X).cuda()
y_numpy = y_pred.cpu().numpy()
for i,elem in enumerate(y_numpy):
output[cursor] = elem
losses[cursor] = loss(X[i], y_pred[i])
cursor +=1
print('=> Prediction file generation...')
np.save('./result/output.npy',output)
np.save('./result/loss.npy',losses)
if __name__ == "__main__":
main()