-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathnearest_neighbor.py
50 lines (39 loc) · 1.49 KB
/
nearest_neighbor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
'''
A nearest neighbor learning algorithm example using TensorFlow library.
'''
from __future__ import print_function
import numpy as np
import tensorflow as tf
# import mnist data
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("/tmp/data/", one_hot = True)
# In this example, we limit mnist data
Xtr, Ytr = mnist.train.next_batch(5000) # 5000 for training (nn candidates)
Xte, Yte = mnist.test.next_batch(200) #200 for testing
# tf graph input
xtr = tf.placeholder("float", [None, 784])
xte = tf.placeholder("float", [784])
# Nearest neighbor calculation using L1 distance
# calculte L1 distance
distance = tf.reduce_sum(tf.abs(tf.add(xtr, tf.negative(xte))), reduction_indices = 1)
# Prediction: get min distance index (nearest neighbor)
pred = tf.arg_min(distance, 0)
accuracy = 0.
#Initializing the variables
init = tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init)
#loop over test data
for i in range(len(Xte)):
#get nearest neighbor
nn_index = sess.run(pred, feed_dict={xtr: Xtr, xte: Xte[i,:] })
#get nearest neighbor class label and compare it to its true label
print("Test", i, "Prediction:", np.argmax(Ytr[nn_index]), \
"true class:", np.argmax(Yte[i]))
# Calculate accuracy
print(Ytr.shape)
print(Yte.shape)
if np.argmax(Ytr[nn_index]) == np.argmax(Yte[i]):
accuracy += 1./len(Xte)
print("Done")
print("Accuracy:", accuracy)