-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathretest
executable file
·876 lines (823 loc) · 34.5 KB
/
retest
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
#!/usr/bin/env python3
#
# Copyright (C) 2017–2024 Jose Manuel Martí Martínez
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as
# published by the Free Software Foundation, either version 3 of the
# License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Affero General Public License for more details.
#
# You should have received a copy of the GNU Affero General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
#
"""
Launch tests for the whole Recentrifuge package.
Meaning of retest exit codes:
Code Explanation
---- ----------------------------------------------
0 All tests passed
1 Problem with required dependencies
2 Failed the version check
3 Failed the retaxdump test
4 Failed the remock test
5 Failed the recentrifuge test
6 Failed the rextract test
7 Failed the check of rextract output against standard values
>7 Failed a multiple comparison between rcf test data and test standard
"""
import argparse
import collections as col
import gzip
import os
import re
import subprocess as sp
import sys
import time
from distutils.version import StrictVersion
from statistics import mean
from typing import Counter, List, Dict, Any, Tuple
from warnings import filterwarnings
import matplotlib.pyplot as plt
import numpy as np
from recentrifuge import __version__, __author__, __date__
from recentrifuge import __path__ # type: ignore # mypy issue #1422
from recentrifuge.config import Filename, Score, Extra, Sample
from recentrifuge.config import LICENSE, TAXDUMP_PATH
from recentrifuge.config import HTML_SUFFIX, XLSX_SUFFIX
from recentrifuge.config import REXTRACT_TEST_SAMPLE, REXTRACT_TEST_FASTQ
from recentrifuge.config import REXTRACT_TEST_TAXID, GZEXT
from recentrifuge.config import STATS_SHEET_NAME, TEST_OUTPUT_DIR, STR_CONTROL
from recentrifuge.config import MOCK_XLSX, MOCK_SHEET, KEY_SHEET, UNASSIGNED
from recentrifuge.config import gray, blue, magenta, green, red, yellow
# Check for general optional dependencies but required for retest
# # pandas (to read Excel with mock layout)
try:
import pandas as pd
if StrictVersion(pd.__version__) < StrictVersion('0.23.2'):
print(red('ERROR!'), 'Please upgrade pandas to v0.23.2 or higher for '
'testing recentrifuge.')
sys.exit(1)
except ImportError:
pd = None
print(red('ERROR!'), 'Please install pandas (v0.23.2 or higher) for '
'testing recentrifuge.')
sys.exit(1)
else:
from pandas.testing import assert_frame_equal
# # BioPython
try:
from Bio import SeqIO
except ImportError:
print(red('ERROR!'), 'Please install BioPython for testing recentrifuge.')
sys.exit(1)
# Local constants
MHL_DEFAULT = 35
MINTAXA_DEFAULT = 5
EPS = 1e-16 # Local epsilon for floating point comparisons
F_V = '-V'
F_TAX = '-n=' + TAXDUMP_PATH
PATH = os.path.dirname(os.path.realpath(__file__))
PATH_TEST: Filename = Filename(os.path.join(__path__[0], 'test/'))
F_FIL = '-f=' + TEST_OUTPUT_DIR
TEST_PREFIX = 'TEST'
OUT_PRE: Filename = Filename(TEST_PREFIX)
XLSX_FIL: Filename = Filename(TEST_PREFIX + XLSX_SUFFIX)
TEST_PDF_FILE: Filename = Filename(TEST_PREFIX + '.rcf.pdf')
ROC_CTRL_PDF_FILE: Filename = Filename('ROC_CTRL.rcf.pdf')
ROC_MINTAX_PDF_FILE: Filename = Filename('ROC_MINTAX.rcf.pdf')
# # General
F_C = '-c'
F_D = '-d'
F_T = '-t'
# # For rextract
F_CFG = '-f=' + os.path.join(TEST_OUTPUT_DIR, REXTRACT_TEST_SAMPLE)
F_INC = '-i=' + REXTRACT_TEST_TAXID
F_FAQ = '-q=' + os.path.join(TEST_OUTPUT_DIR, REXTRACT_TEST_FASTQ + GZEXT)
REXTRACTED_FASTQ_GZ = Filename(
os.path.join(TEST_OUTPUT_DIR, REXTRACT_TEST_FASTQ).rstrip('.fastq') +
'_rxtr_incl' + REXTRACT_TEST_TAXID + '.fastq.gz'
)
# # For rcf
F_OUT = '-o='
F_CTR = '-c=3'
F_MHL = '-y='
F_RND = '-r='
F_MIN = '-m='
F_CTR_MIN = '-w='
F_PKL = '--pickle'
XLSX_PATH: Filename = Filename(os.path.join(TEST_OUTPUT_DIR, XLSX_FIL))
STND_PATH: Filename = Filename(os.path.join(PATH_TEST, XLSX_FIL))
MOCK_PATH: Filename = Filename(os.path.join(PATH_TEST, MOCK_XLSX))
SAMPLES: List[Sample] = [
Sample(spl) for spl in ['ctrl1', 'ctrl2', 'ctrl3',
'smpl1', 'smpl2', 'smpl3', 'smpl4']
]
SAMPLEX: List[Sample] = SAMPLES + [Sample('smplH')]
STR_CTRL_SP = '_' + STR_CONTROL + '_species'
CTRL_SP: List[Sample] = [
Sample(spl + STR_CTRL_SP) for spl in ['smpl1', 'smpl2', 'smpl3', 'smpl4']]
DEBUG_SP: Sample = Sample('smplH')
def main():
"""Main entry point to script."""
def vprint(*arguments, **kargs) -> None:
"""Print only if verbose/debug mode is enabled"""
if args.debug:
print(*arguments, **kargs)
def configure_parser():
"""Argument Parser Configuration"""
parser = argparse.ArgumentParser(
description='Launch Recentrifuge tests',
epilog=f'%(prog)s - Release {__version__} - {__date__}' + LICENSE,
formatter_class=argparse.RawDescriptionHelpFormatter
)
parser.add_argument(
'-d', '--debug',
action='store_true',
help='increase output verbosity and perform additional checks'
)
parser.add_argument(
'-i', '--ignore',
action='store_true',
help='continue testing even if errors arise'
)
parser.add_argument(
'-l', '--local',
action='store_true',
help='test local directory scripts instead of pip installed'
)
parser_additional = parser.add_argument_group(
'additional', 'perform additional tests')
parser_additional.add_argument(
'-m', '--mintaxa',
action='store_true',
help='perform additional tests for mintaxa dependency'
)
parser_additional.add_argument(
'-r', '--roc',
action='store_true',
help='perform additional tests and get ROC figures'
)
parser_advanced = parser.add_argument_group(
'advanced', 'activate advanced or experimental features')
parser_advanced.add_argument(
'-s', '--skip',
action='store_true',
help='skip the recentrifuge calls and just load the results to '
'plot ROC figure by mintaxa (results should be available)'
)
parser_advanced.add_argument(
'--strain',
action='store_true',
help='set this same flag in rcf [experimental feature]'
)
parser.add_argument(
'-y', '--minscore',
action='store',
metavar='NUMBER',
type=lambda txt: Score(float(txt)),
default=Score(MHL_DEFAULT),
help=('minimum score/confidence of the classification of a read '
f'to pass the quality filter; {MHL_DEFAULT} by default')
)
parser.add_argument(
'-V', '--version',
action='version',
version=f'%(prog)s release {__version__} ({__date__})'
)
return parser
def check_debug_strain():
"""Check debugging and strain modes"""
# Check for debugging mode
if args.debug:
print(blue('INFO:'), gray('Debugging mode activated'))
print(blue('INFO:'), gray('Active parameters:'))
for key, value in vars(args).items():
if value:
print(gray(f'\t{key} ='), f'{value}')
print(blue('INFO:'), gray('Relevant paths:'))
for var in ['TAXDUMP_PATH', 'PATH', 'PATH_TEST',
'XLSX_PATH', 'STND_PATH', 'MOCK_PATH']:
print(gray(f'\t{var} ='), f'{eval(var)}') # Safe eval of const
# Check for strain experimental mode
if args.strain:
print(yellow('CAUTION!'), '--strain experimental mode activated!')
def test_version():
"""Test version matching"""
prog: Filename = Filename(prefix + 'rcf')
print(magenta(f'\n>>> TESTING VERSION ... '), end='')
sys.stdout.flush()
cproc = sp.run([prog, F_V], stdout=sp.PIPE, stderr=sp.STDOUT,
universal_newlines=True)
match = re.search(r'(\d+\.\d+\.\d+[a-z]*\d*)\s', cproc.stdout)
if match is not None and match.group(1) == __version__:
print(green('OK!'))
else:
print(red('FAILED!'))
if match is not None:
print(blue('INFO:'),
f'Installed recentrifuge is v{match.group(1)} '
f'while these tests are for version {__version__}')
if not args.ignore:
sys.exit(2)
def test_retaxdump():
"""Test retaxdump"""
prog: Filename = Filename(prefix + 'retaxdump')
print(magenta(f'\n>>> TESTING {prog} ...'))
sys.stdout.flush()
cproc = sp.run([prog], universal_newlines=True)
print(magenta(f'\n<<< END {prog} TEST: '), end='')
if cproc.returncode == 0:
print(green('OK!'))
else:
print(red('FAILED!'))
if not args.ignore:
sys.exit(3)
def test_remock():
"""Test remock"""
prog: Filename = Filename(prefix + 'remock')
print(magenta(f'\n>>> TESTING {prog} ...'))
argums = [prog, F_TAX, F_RND + str(minscore), F_T, F_D, F_C]
if args.debug:
print(argums)
cproc = sp.run(argums, universal_newlines=True)
print(magenta(f'\n<<< END {prog} TEST: '), end='')
if cproc.returncode == 0:
print(green('OK!'))
else:
print(red('FAILED!'))
if not args.ignore:
sys.exit(4)
def test_rcf(out_prefix: Filename = OUT_PRE,
mintaxa: int = None):
"""Test recentrifuge"""
prog: Filename = Filename(prefix + 'rcf')
print(magenta(f'\n>>> TESTING {prog} WITH MINTAXA {mintaxa} ...'))
argums = [prog, F_TAX, F_FIL, F_PKL, F_PKL, # '--pickle' twice
F_OUT + os.path.join(TEST_OUTPUT_DIR, out_prefix),
F_CTR, F_MHL + str(minscore), F_D]
if mintaxa is not None:
argums.append(F_MIN + str(mintaxa))
argums.append(F_CTR_MIN + str(mintaxa))
if args.strain:
argums.append('--strain')
if args.debug:
print(argums)
cproc = sp.run(argums, universal_newlines=True)
print(magenta(f'\n<<< END {prog} TEST: '), end='')
if cproc.returncode == 0:
print(green('OK!'))
else:
print(red('FAILED!'))
if not args.ignore:
sys.exit(5)
def test_rextract():
"""Test rextract"""
prog: Filename = Filename(prefix + 'rextract')
print(magenta(f'\n>>> TESTING {prog} ...'))
argums = [prog, F_CFG, F_FAQ, F_INC, F_D, F_C]
if args.debug:
print(argums)
cproc = sp.run(argums, universal_newlines=True)
print(magenta(f'\n<<< END {prog} TEST: '), end='')
if cproc.returncode == 0:
print(green('OK!'))
else:
print(red('FAILED!'))
if not args.ignore:
sys.exit(6)
def load_excels(just_excel: Filename = None):
"""Load excels from standard and recentrifuge results"""
nonlocal pd_xlsx, pd_stnd, pd_mock # type: ignore # mypy issue #7057
if just_excel is None:
print(magenta(f'>>> LOADING TEST RESULTS ... '), end='')
try:
if just_excel is None:
pd_xlsx = pd.ExcelFile(XLSX_PATH,
engine='openpyxl',
)
else:
pd_xlsx = pd.ExcelFile(just_excel,
engine='openpyxl',
)
except OSError:
if just_excel is None:
print(red('FAILED!\nERROR!'), 'Results for test not found!')
else:
print(red('FAILED!\nERROR!'), f'Problem with {just_excel}.')
if args.skip:
print(blue('HINT:'),
'You probably want to rerun without the skip flag')
raise
else:
if just_excel is None:
print(green('OK!'))
if just_excel is None:
print(magenta(f'>>> LOADING STANDARD RESULTS ... '), end='')
try:
pd_stnd = pd.ExcelFile(STND_PATH,
engine='openpyxl',
)
except OSError:
print(red('FAILED!\nERROR!'), 'Missing standard test results!')
raise
else:
print(green('OK!'))
print(magenta(f'>>> LOADING MOCK DATA ... '), end='')
try:
pd_mock = pd.ExcelFile(MOCK_PATH,
engine='openpyxl',
)
except OSError:
print(red('FAILED!\nERROR!'), 'Missing mock xlsx file!')
raise
else:
print(green('OK!'))
def test_rextract_results():
"""Test rextract results against standard values"""
prog: Filename = Filename(prefix + 'rextract')
print(magenta(f'\n>>> CHECKING {prog} RESULTS AGAINST STANDARD ... '),
end='', flush=True)
df_mock = pd_mock.parse(
sheet_name=MOCK_SHEET, header=[0],
index_col=1, skipfooter=1,
engine='openpyxl',
)
cnt_mck: int
try:
cnt_mck = df_mock[REXTRACT_TEST_SAMPLE.rstrip('.out')][
int(REXTRACT_TEST_TAXID)]
except KeyError:
cnt_mck = 0
with gzip.open(REXTRACTED_FASTQ_GZ, 'rt') as fgz:
record_iterator = SeqIO.parse(fgz, "quickfastq")
num_seqs: int = len(list(record_iterator))
if num_seqs == cnt_mck:
print(blue(f'{cnt_mck}'), 'fastq seqs', green('OK!'))
else:
print(red('FAILED!'))
print('Difference between test results and standard values:')
print(f'Expected {cnt_mck} FASTQ seqs and got {num_seqs} instead.')
if not args.ignore:
sys.exit(7)
def analyze_robust_contam_removal():
"""Analyze recentrifuge results for robust contamination removal"""
print(magenta(f'\n>>> ANALYZING ROBUST CONTAMINATION REMOVAL ... '),
end='')
# Figure initialization
filterwarnings("ignore", category=UserWarning, module="matplotlib")
fig, ax = plt.subplots(
nrows=2, ncols=1, squeeze=False, sharey='col', sharex='col',
figsize=(20, 12)
)
fig.set_tight_layout({'rect': [0.0, 0.0, 1.0, 1.0],
'w_pad': 0, 'h_pad': 0.1})
ax_raw = ax[0, 0]
ax_ctr = ax[1, 0]
# Load data sheets as pandas DataFrames
df_stnd = pd_stnd.parse(
sheet_name=str(Extra.FULL), header=[0, 1],
skiprows=None, index_col=0,
engine='openpyxl',
)
df_xlsx = pd_xlsx.parse(
sheet_name=str(Extra.FULL), header=[0, 1],
skiprows=None, index_col=0,
engine='openpyxl',
)
df_xlsx.columns = df_stnd.columns # Normalize columns name
df_key = pd_mock.parse(
sheet_name=KEY_SHEET, header=[0],
index_col=0, dtype={'NAME': bytearray, 'COLOR': str, 'HATCH': str,
'NATIVES': list, 'RANK': str, 'HIST': bool},
engine='openpyxl',
)
# Data initialization
numtaxa = len(df_key['HIST'][df_key['HIST']])
n = len(SAMPLES)
ind = np.arange(n) # the x locations for all the samples
width = 0.90 / numtaxa # the width of the bars regarding space
ymax = 1e+5
ymin = 1e+0
# Generate bar plot
rects: List[Any] = []
for num, (taxid, taxon) in enumerate(df_key.iterrows()):
if not taxon['HIST']:
break
rects.append(
ax_raw.bar(
ind + num * width,
[df_xlsx[s][UNASSIGNED][int(taxid)] for s in SAMPLES],
width, color=[taxon["COLOR"]], hatch=taxon["HATCH"],
alpha=0.5, label=taxon["NAME"])
)
ax_ctr.bar(ind + num * width,
[0.1, 0.1, 0.1] +
[df_xlsx[s][UNASSIGNED][int(taxid)] for s in CTRL_SP],
width, color=[taxon["COLOR"]], hatch=taxon["HATCH"],
alpha=0.5, label=taxon["NAME"])
# Add mintaxa threshold
rects.append(ax_raw.axhline(y=MINTAXA_DEFAULT, color='r', lw=1))
rects.append(ax_ctr.axhline(y=MINTAXA_DEFAULT, color='r', lw=1))
# Set scale, axis lims, ticks, and grid
ax_raw.set_yscale("log", nonpositive='clip')
ax_raw.set_ylim(top=ymax, bottom=ymin)
xmin = ind[0] - 0.5 + width * (numtaxa - 1) / 2
xmax = ind[-1] + 0.5 + width * (numtaxa - 1) / 2
ax_raw.set_xlim(left=xmin, right=xmax)
ax_raw.set_xticks(ind + width * (numtaxa - 1) / 2)
ax_raw.set_xticks(ind[:-1] + 0.5 +
width * (numtaxa - 1) / 2, minor=True)
ax_raw.xaxis.grid(True, which='minor', linewidth=5, color='k')
ax_raw.yaxis.grid(True, alpha=0.5)
ax_ctr.xaxis.grid(True, which='minor', linewidth=5, color='k')
ax_ctr.yaxis.grid(True, alpha=0.5)
ax_ctr.set_xticklabels(SAMPLES, fontdict={'fontsize': 'xx-large'})
ax_ctr.legend(rects,
[pair[1]['NAME'] for pair in df_key.iterrows()
if pair[1]['HIST']] +
[r'$\mathtt{mintaxa}$'],
loc='best', framealpha=0.9,
prop={'family': 'sans-serif', 'size': 'medium'})
# Add inner titles
ax_raw.text(
ind[n - 2] + width * (numtaxa - 1) / 2, ymax / 1.3,
'Species or below in raw samples', size=20,
ha="center", va="center",
bbox=dict(
boxstyle="round", ec=(1., 0.4, 0.4),
fc=(1., 0.7, 0.7)
)
)
ax_ctr.text(
ind[n - 2] + width * (numtaxa - 1) / 2, ymax / 1.3,
'Species after robust contamination removal', size=20,
ha="center", va="center",
bbox=dict(
boxstyle="round", ec=(0.2, 0.8, 0.2),
fc=(0.5, 0.8, 0.5)
)
)
# Label negative controls
ax_raw.fill_between([xmin, ind[2] + 0.5 + width * (numtaxa - 1) / 2],
ymax, color='c', alpha=0.1)
ax_raw.text(
ind[2] + 0.4 + width * (numtaxa - 1) / 2, ymax / 10,
'negative controls', ha="center", va="center",
rotation=-90, fontsize='x-large', color='b'
)
ax_ctr.fill_between([xmin, ind[2] + 0.5 + width * (numtaxa - 1) / 2],
ymax, color='c', alpha=0.1)
ax_ctr.text(
ind[2] + 0.4 + width * (numtaxa - 1) / 2, ymax / 10,
'negative controls', ha="center", va="center",
rotation=-90, fontsize='x-large', color='b'
)
# Save and show figure
fig.savefig(os.path.join(TEST_OUTPUT_DIR, TEST_PDF_FILE),
bbox_inches='tight')
try:
fig.show()
except KeyboardInterrupt:
print(gray(' User'), yellow('interrupted!'))
raise
except Exception:
print(yellow('WARNING!'), 'Unable to show plot.')
try:
plt.close(fig)
except KeyboardInterrupt:
print(gray(' User'), yellow('interrupted!'))
raise
except Exception:
print(yellow('WARNING!'), 'Unable to close figure.')
else:
print(green('OK!'))
def get_roc(plot_roc: bool = True, silent: bool = False
) -> Tuple[Dict[Sample, float], Dict[Sample, float]]:
"""Get ROC parameters and plot ROC"""
if not silent:
print(magenta(f'\n>>> GET ROC ... '))
print(magenta(f'>> GET PARAMETERS... '), end='', flush=True)
# Load data sheets as pandas DataFrames
df_stnd = pd_stnd.parse(
sheet_name=str(Extra.FULL), header=[0, 1],
skiprows=None, index_col=0,
engine='openpyxl',
)
df_xlsx = pd_xlsx.parse(
sheet_name=str(Extra.FULL), header=[0, 1],
skiprows=None, index_col=0,
engine='openpyxl',
)
df_mock = pd_mock.parse(
sheet_name=MOCK_SHEET, header=[0],
index_col=1, skipfooter=1,
engine='openpyxl',
)
del df_mock['RECENTRIFUGE MOCK']
df_key = pd_mock.parse(
sheet_name=KEY_SHEET, header=[0],
index_col=0, dtype={'NAME': bytearray, 'COLOR': str, 'HATCH': str,
'NATIVES': list, 'RANK': str, 'HIST': bool},
engine='openpyxl',
)
# Normalize column names to the standard names (without directory)
stnd_samples = df_stnd.columns.get_level_values(0)
rename_cols = {TEST_OUTPUT_DIR + spl: spl for spl in stnd_samples}
df_xlsx.rename(columns=rename_cols, inplace=True, level=0)
# Get data
positives: Counter[Sample] = col.Counter()
negatives: Counter[Sample] = col.Counter()
true_pos_raw: Counter[Sample] = col.Counter()
fake_pos_raw: Counter[Sample] = col.Counter()
true_pos_ctr: Counter[Sample] = col.Counter()
fake_pos_ctr: Counter[Sample] = col.Counter()
cnt_mck: int
cnt_raw: int
cnt_ctr: int
for taxid, taxon in df_key.iterrows():
if 'species' not in taxon['RANK']:
continue
for spl in SAMPLEX[3:]:
try:
cnt_mck = df_mock[spl][int(taxid)]
except KeyError:
cnt_mck = 0
try:
cnt_raw = df_xlsx[spl][UNASSIGNED][int(taxid)]
except KeyError:
cnt_raw = 0
try:
cnt_ctr = df_xlsx[spl
+ STR_CTRL_SP][UNASSIGNED][int(taxid)]
except KeyError:
cnt_ctr = 0
if spl in taxon['NATIVES']:
positives[spl] += cnt_mck
true_pos_raw[spl] += cnt_raw
true_pos_ctr[spl] += cnt_ctr
else:
negatives[spl] += cnt_mck
fake_pos_raw[spl] += cnt_raw
fake_pos_ctr[spl] += cnt_ctr
# Get TPR and FPR
tpr_raw: Dict[Sample, float] = {}
fpr_raw: Dict[Sample, float] = {}
tpr_ctr: Dict[Sample, float] = {}
fpr_ctr: Dict[Sample, float] = {}
segs: List[List[Tuple[float, float]]] = []
for spl in SAMPLEX[3:]:
# For raw samples
if true_pos_raw[spl] > positives[spl]:
fake_pos_raw[spl] += (true_pos_raw[spl] - positives[spl])
true_pos_raw[spl] = positives[spl]
tpr_raw[spl] = true_pos_raw[spl] / positives[spl]
fpr_raw[spl] = fake_pos_raw[spl] / negatives[spl]
# For CTRL samples
if true_pos_ctr[spl] > positives[spl]:
fake_pos_ctr[spl] += (true_pos_ctr[spl] - positives[spl])
true_pos_ctr[spl] = positives[spl]
tpr_ctr[spl] = true_pos_ctr[spl] / positives[spl]
fpr_ctr[spl] = fake_pos_ctr[spl] / negatives[spl]
segs.append([(fpr_raw[spl], tpr_raw[spl]),
(fpr_ctr[spl], tpr_ctr[spl])])
if not silent:
print(green('OK!'), flush=True)
vprint('TPR (raw samples) =', tpr_raw)
vprint('FPR (raw samples) =', fpr_raw)
vprint('TPR (CTRL samples) =', tpr_ctr)
vprint('FPR (CTRL samples) =', fpr_ctr)
vprint(f'Coordinates (for {DEBUG_SP}) =',
segs[SAMPLEX.index(DEBUG_SP)-3]) # 3 = num of ctrl samples
vprint(f'P (for {DEBUG_SP}) =', positives[DEBUG_SP])
vprint(f'N (for {DEBUG_SP}) =', negatives[DEBUG_SP])
vprint('TP (...raw) =', true_pos_raw[DEBUG_SP])
vprint('FP (...raw) =', fake_pos_raw[DEBUG_SP])
vprint('TP (...CTRL) =', true_pos_ctr[DEBUG_SP])
vprint('FP (...CTRL) =', fake_pos_ctr[DEBUG_SP])
if plot_roc:
if not silent:
print(magenta(f'>> PLOT ROC... '), end='', flush=True)
# Figure initialization
filterwarnings("ignore", category=UserWarning, module="matplotlib")
fig, ax = plt.subplots(figsize=(6, 6))
ax.set_xlim(-0.02, 1.02)
ax.set_ylim(-0.02, 1.02)
ax.set_aspect('equal')
ax.set_xlabel('FPR | (1 - specificity)')
ax.set_ylabel('TPR | Sensitivity | Recall')
ax.set_title('Evolution from raw samples to CTRL_species samples')
# Generate arrow plot
arrows: List[Any] = []
for spl, color in zip(SAMPLEX[3:], ['r', 'g', 'b', 'm', 'c']):
arrows.append(
ax.arrow(fpr_raw[spl], tpr_raw[spl],
fpr_ctr[spl] - fpr_raw[spl],
tpr_ctr[spl] - tpr_raw[spl],
shape='full', lw=1, length_includes_head=True,
head_width=0.02, head_length=0.01, color=color)
)
arrows.append(
ax.arrow(1.2, 1.2, -1.4, -1.4, lw=1, linestyle=':',
head_width=0, head_length=0, color='0.8', alpha=0.5))
ax.legend(arrows,
SAMPLEX[3:] + ['ROC plot diagonal'], loc='lower right',
prop={'family': 'sans-serif', 'size': 'medium'},
framealpha=0.9)
# Save and show figure
fig.savefig(os.path.join(TEST_OUTPUT_DIR, ROC_CTRL_PDF_FILE),
bbox_inches='tight')
try:
fig.show()
except KeyboardInterrupt:
print(gray(' User'), yellow('interrupted!'))
raise
except Exception:
print(yellow('WARNING!'), 'Unable to show plot.')
try:
plt.close(fig)
except KeyboardInterrupt:
print(gray(' User'), yellow('interrupted!'))
raise
except Exception:
print(yellow('WARNING!'), 'Unable to close figure.')
else:
if not silent:
print(green('OK!'), flush=True)
# Return ROC values
return tpr_ctr, fpr_ctr
def get_mintaxa_roc():
"""Get ROC parameters function of mintaxa and plot ROC"""
print(magenta(f'\n>>> GET MINTAXA ROC ... '), end='', flush=True)
tpr_mintax: Dict[int, Dict[Sample, float]] = {}
fpr_mintax: Dict[int, Dict[Sample, float]] = {}
vals = list(range(11)) + [
12, 15, 25, 50, 100, 150, 200, 250, 400, 500, 800, 1000, 1500,
2000, 2500, 4000, 5000, 8000, 10000, 15000, 20000, 40000, 80000]
html_name = [Filename(TEST_PREFIX + '_mintaxa' + str(v) + HTML_SUFFIX)
for v in vals]
for mintax, html in zip(vals, html_name):
print(magenta(f' {mintax},'), end='', flush=True)
if not args.skip:
test_rcf(out_prefix=html, mintaxa=mintax)
xlsx_test_filename: Filename = Filename(
TEST_PREFIX + '_mintaxa' + str(mintax) + XLSX_SUFFIX)
load_excels(just_excel=Filename(
os.path.join(TEST_OUTPUT_DIR, xlsx_test_filename)))
(tpr_ctr, fpr_ctr) = get_roc(plot_roc=False, silent=True)
tpr_mintax[mintax] = tpr_ctr
fpr_mintax[mintax] = fpr_ctr
vprint('\t All TPR =', tpr_mintax)
vprint('\t All FPR =', fpr_mintax)
# Figure initialization
filterwarnings("ignore", category=UserWarning, module="matplotlib")
fig, ax = plt.subplots(figsize=(6, 6))
ax.set_xlim(-0.02, 1.02)
ax.set_ylim(-0.02, 1.02)
ax.set_aspect('equal')
ax.set_xlabel('FPR | (1 - specificity)')
ax.set_ylabel('TPR | Sensitivity | Recall')
ax.set_title('Evolution of ROC with mintaxa variation')
rocs: List[Any] = []
for spl, color in zip(SAMPLEX[3:], ['r', 'g', 'b', 'm', 'c']):
x_fpr = [fpr_mintax[mintax][spl] for mintax in vals]
y_tpr = [tpr_mintax[mintax][spl] for mintax in vals]
rocs.append( # Append element 0 of axis.plot
ax.plot(x_fpr, y_tpr, color=color, linestyle='-', marker='',
linewidth=2, label=spl)[0])
x_fpr_avg = [mean(fpr_mintax[mintax].values()) for mintax in vals]
y_tpr_avg = [mean(tpr_mintax[mintax].values()) for mintax in vals]
rocs.append( # Append element 0 of axis.plot
ax.plot(x_fpr_avg, y_tpr_avg, color='orange',
linestyle=':', marker='', linewidth=3, label='MEAN')[0])
rocs.append(
ax.arrow(1.2, 1.2, -1.4, -1.4, lw=1, linestyle=':',
head_width=0, head_length=0, color='0.8',
alpha=0.5, label='ROC plot diagonal'))
ax.legend(rocs, SAMPLEX[3:] + ['Mean of samples', 'ROC plot diagonal'],
prop={'family': 'sans-serif', 'size': 'medium'},
framealpha=0.9, loc='lower right')
# Annotate ROC by mintaxa
vals_show = [0, 2, 3, 4, 5, 15, 25, 200]
for num, mintax in enumerate(vals_show):
x_pos = mean(fpr_mintax[mintax].values())
y_pos = mean(tpr_mintax[mintax].values())
ax.annotate(str(mintax), xy=(x_pos, y_pos),
xytext=(x_pos+0.4+0.01*num,
y_pos-0.06*(len(vals_show)-num/2)),
ha="center", va="center", color='0.2',
fontsize='small', fontfamily='monospace',
arrowprops=dict(color='0.2', shrink=0.02,
width=0, headwidth=2,
linestyle='-', linewidth=0.1)
)
vals_show = [500, 1000, 2000, 4000, 5000, 8000, 20000, 40000]
for num, mintax in enumerate(vals_show):
x_pos = mean(fpr_mintax[mintax].values())
y_pos = mean(tpr_mintax[mintax].values())
ax.annotate(str(mintax), xy=(x_pos, y_pos),
xytext=(x_pos+0.12+0.04*(len(vals_show)-num),
y_pos), ha="center", va="center", color='0.2',
fontsize='small', fontfamily='monospace',
arrowprops=dict(color='0.2', shrink=0.02,
width=0, headwidth=2,
linestyle='-', linewidth=0.1)
)
# Save and show figure
fig.savefig(os.path.join(TEST_OUTPUT_DIR, ROC_MINTAX_PDF_FILE),
bbox_inches='tight')
try:
fig.show()
except KeyboardInterrupt:
print(gray(' User'), yellow('interrupted!'))
raise
except Exception:
print(yellow('WARNING!'), 'Unable to show plot.')
try:
plt.close(fig)
except KeyboardInterrupt:
print(gray(' User'), yellow('interrupted!'))
raise
except Exception:
print(yellow('WARNING!'), 'Unable to close figure.')
else:
print(green(' OK!'), flush=True)
def test_rcf_results():
"""Test recentrifuge results against standard"""
prog: Filename = Filename(prefix + 'rcf')
print(magenta(f'\n>>> COMPARING {prog} RESULTS WITH STANDARD:'))
for sheet in [STATS_SHEET_NAME, str(Extra.FULL)]:
print(magenta(f'>> TEST FOR {sheet}... '), end='')
df_stnd = pd_stnd.parse(
sheet_name=sheet, header=[0, 1],
skiprows=None, index_col=0,
engine='openpyxl',
)
df_xlsx = pd_xlsx.parse(
sheet_name=sheet, header=[0, 1],
skiprows=None, index_col=0,
engine='openpyxl',
)
df_xlsx.columns = df_stnd.columns # Normalize columns name
try:
assert_frame_equal(df_xlsx, df_stnd, check_exact=False)
except AssertionError as e:
print(red('FAILED!'))
print(e)
df_mask = df_xlsx.ne(df_stnd)
print(blue('Test results are:'))
df_drop = df_xlsx[df_mask].dropna(axis=0, how='all')
df_drop.dropna(axis=1, how='all', inplace=True)
print(df_drop)
print(blue('... but standard results are:'))
df_drop = df_stnd[df_mask].dropna(axis=0, how='all')
df_drop.dropna(axis=1, how='all', inplace=True)
print(df_drop)
if not args.ignore:
sys.exit(8)
else:
print(green('OK!'))
# Timing initialization
start_time: float = time.time()
# Program header
print(f'\n=-= {sys.argv[0]} =-= v{__version__} - {__date__}'
f' =-= by {__author__} =-=\n')
sys.stdout.flush()
# Parse arguments
argparser = configure_parser()
args = argparser.parse_args()
minscore: Score = args.minscore
prefix: Filename = Filename('')
if args.local:
prefix = Filename('./')
check_debug_strain()
test_version()
test_retaxdump()
test_remock()
test_rcf()
test_rextract()
pd_xlsx: pd.ExcelFile = None
pd_stnd: pd.ExcelFile = None
pd_mock: pd.ExcelFile = None
load_excels()
test_rextract_results()
if args.strain:
print(blue('INFO:'),
gray('Skipping further tests due to the --strain option!'))
else:
analyze_robust_contam_removal()
if args.roc:
get_roc(plot_roc=True)
if args.mintaxa:
get_mintaxa_roc()
load_excels()
test_rcf_results()
# Timing results
print(gray('Total test time:'), time.strftime(
"%H:%M:%S", time.gmtime(time.time() - start_time)))
if __name__ == '__main__':
main()