-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy path_census_process.R
83 lines (58 loc) · 2.21 KB
/
_census_process.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
source("_fns.R")
source("_census_dict.R")
load("data/geo/state_muni_codes.Rdata")
muni_codes$code2 <- substr(muni_codes$muni_code, 1, 6)
census <- list()
for (type in names(census_dict)) {
message(type)
# type <- names(census_dict)[[1]]
ff <- list.files("data/datasus/IBGE/censo", full.names = TRUE, pattern = type)
nms_keep <- names(census_dict[[type]])
res <- list()
for (ii in seq_along(ff)) {
message(ii)
res[[ii]] <- read_and_transform(ff[ii], census_dict[[type]], nms_keep)
}
tmp <- bind_rows(res)
tmp <- left_join(tmp, select(muni_codes, code2, state_code), by = c(muni_code = "code2"))
tmp$state_code <- factor(tmp$state_code)
# make muni codes integer
tmp$muni_code <- as.integer(tmp$muni_code)
census[[type]] <- tmp
}
census$RENDABR$situation <- NULL
lapply(census, nrow)
save(census, file = "data/census.Rdata")
##
##---------------------------------------------------------
# this has total population, sex, urban/rural, age group for each municipality / year
# see docs/populacao_en
ff <- list.files("data/datasus/IBGE/POP", recursive = TRUE, full.names = TRUE, pattern = "\\.csv")
a <- readr::read_csv(ff[1])
# this just has total population for each municipality / year
# see docs/populacaoTCU_en
ff <- list.files("data/datasus/IBGE/POPTCU", recursive = TRUE, full.names = TRUE, pattern = "\\.csv")
pop <- lapply(ff, readr::read_csv)
pop <- dplyr::bind_rows(pop)
names(pop) <- c("muni_code", "year", "pop")
save(pop, file = "data/census_pop.Rdata")
## extra stuff
##---------------------------------------------------------
# tmp2 <- lapply(ff, function(x) foreign::read.dbf(x))
# tmp2 <- bind_rows(tmp2)
# table(tmp2$IDADE, useNA = "always")
# table(tmp2[[3]]$ESCOLARID, useNA = "always")
# 0000 0103 0407 0899 ALFA IGNO <NA>
# 71475 72701 76054 67027 10936 30608 0
# 0003 0407 0899 IGNO <NA>
# 80530 71397 78677 68744 0
# 0000 0103 0407 0899 IGNO <NA>
# 55929 52861 53168 43536 3228 0
# tmp <- bind_rows(res)
table(tmp$race, useNA = "always")
table(tmp$sex, useNA = "always")
table(tmp$situation, useNA = "always")
table(tmp$age_group, useNA = "always")
# ESCABR and ESCBBR
table(tmp$schooling, useNA = "always") ###
# these need to be normalized across years