-
Notifications
You must be signed in to change notification settings - Fork 46
/
Copy pathpixelcnn_loss.py
142 lines (111 loc) · 5.87 KB
/
pixelcnn_loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import torch.nn as nn
import torch
import torch.nn.functional as F
from torch.autograd import Variable
import numpy as np
def discretized_mix_logistic_loss(x, l, sum_all=True):
xs = x.size() # (B,32,32,C)
ls = l.size() # (B,32,32,100)
# here and below: unpacking the params of the mixture of logistics
nr_mix = int(ls[-1] / 10) # 10
logit_probs = l[:, :, :, :nr_mix] # size: [B, 32, 32, 3, nr_mix]
# l = l[:, :, :, nr_mix:].contiguous().view(xs[0], xs[1], xs[2], xs[3], nr_mix * 3) # size: [B, 32, 32, 3, 3 * nr_mix]
l = l[:, :, :, nr_mix:].contiguous().view(xs[0], xs[1], xs[2], xs[3], -1) # size: [B, 32, 32, C, 9 * nr_mix / C]
# size: [B, 32, 32, C, nr_mix]
means = l[:, :, :, :, :nr_mix]
log_scales = F.threshold(l[:, :, :, :, nr_mix:2 * nr_mix], -7., -7.)
coeffs = torch.tanh(l[:, :, :, :, 2 * nr_mix:3 * nr_mix])
# here and below: getting the means and adjusting them based on preceding
# sub-pixels
x = x.unsqueeze(4).expand(xs[0], xs[1], xs[2], xs[3], nr_mix) # size: [B, 32, 32, C, nr_mix]
m1 = means[:, :, :, 0, :]
m2 = means[:, :, :, 1, :] + coeffs[:, :, :, 0, :] * x[:, :, :, 0, :]
m3 = means[:, :, :, 2, :] + coeffs[:, :, :, 1, :] * x[:, :, :, 0, :] + coeffs[:, :, :, 2, :] * x[:, :, :, 1, :]
means = torch.cat([m1, m2, m3], 3)
centered_x = x - means
inv_stdv = torch.exp(-log_scales)
plus_in = inv_stdv * (centered_x + 1. / 255.)
cdf_plus = F.sigmoid(plus_in)
min_in = inv_stdv * (centered_x - 1. / 255.)
cdf_min = F.sigmoid(min_in)
# log probability for edge case of 0 (before scaling)
log_cdf_plus = plus_in - F.softplus(plus_in)
# log probability for edge case of 255 (before scaling)
log_one_minus_cdf_min = -F.softplus(min_in)
cdf_delta = cdf_plus - cdf_min # probability for all other cases
mid_in = inv_stdv * centered_x
# log probability in the center of the bin, to be used in extreme cases
# (not actually used in our code)
log_pdf_mid = mid_in - log_scales - 2. * F.softplus(mid_in)
# now select the right output: left edge case, right edge case, normal
# case, extremely low prob case (doesn't actually happen for us)
mask1 = (cdf_delta > 1e-5).float().detach()
term1 = mask1 * torch.log(F.threshold(cdf_delta, 1e-12, 1e-12)) + (1. - mask1) * (log_pdf_mid - np.log(127.5))
mask2 = (x > 0.999).float().detach()
term2 = mask2 * log_one_minus_cdf_min + (1. - mask2) * term1
mask3 = (x < -0.999).float().detach()
term3 = mask3 * log_cdf_plus + (1. - mask3) * term2
log_probs = term3.sum(3) + log_prob_from_logits(logit_probs)
if not sum_all:
return -log_sum_exp(log_probs).sum(1).sum(2).squeeze()
else:
return -log_sum_exp(log_probs).sum()
def discretized_mix_logistic_loss_c1(x, l, sum_all=True):
xs = x.size() # (B,32,32,1)
ls = l.size() # (B,32,32,100)
# here and below: unpacking the params of the mixture of logistics
nr_mix = int(ls[-1] / 3)
logit_probs = l[:, :, :, :nr_mix] # size: [B, 32, 32, nr_mix]
# l = l[:, :, :, nr_mix:].contiguous().view(xs[0], xs[1], xs[2], xs[3], nr_mix * 3) # size: [B, 32, 32, 3, 3 * nr_mix]
l = l[:, :, :, nr_mix:].contiguous().view(xs[0], xs[1], xs[2], xs[3], nr_mix * 2) # size: [B, 32, 32, 1, 2 * nr_mix]
# size: [B, 32, 32, 1, nr_mix]
means = l[:, :, :, :, :nr_mix]
log_scales = F.threshold(l[:, :, :, :, nr_mix:2 * nr_mix], -7., -7.)
# coeffs = torch.tanh(l[:, :, :, :, 2 * nr_mix:3 * nr_mix])
# here and below: getting the means and adjusting them based on preceding
# sub-pixels
x = x.unsqueeze(4).expand(xs[0], xs[1], xs[2], xs[3], nr_mix) # size: [B, 32, 32, C, nr_mix]
# m1 = means[:, :, :, 0, :]
# m2 = means[:, :, :, 1, :] + coeffs[:, :, :, 0, :] * x[:, :, :, 0, :]
# m3 = means[:, :, :, 2, :] + coeffs[:, :, :, 1, :] * x[:, :, :, 0, :] + coeffs[:, :, :, 2, :] * x[:, :, :, 1, :]
# means = torch.cat([m1, m2, m3], 3)
centered_x = x - means
inv_stdv = torch.exp(-log_scales)
plus_in = inv_stdv * (centered_x + 1. / 255.)
cdf_plus = F.sigmoid(plus_in)
min_in = inv_stdv * (centered_x - 1. / 255.)
cdf_min = F.sigmoid(min_in)
# log probability for edge case of 0 (before scaling)
log_cdf_plus = plus_in - F.softplus(plus_in)
# log probability for edge case of 255 (before scaling)
log_one_minus_cdf_min = -F.softplus(min_in)
cdf_delta = cdf_plus - cdf_min # probability for all other cases
mid_in = inv_stdv * centered_x
# log probability in the center of the bin, to be used in extreme cases
# (not actually used in our code)
log_pdf_mid = mid_in - log_scales - 2. * F.softplus(mid_in)
# now select the right output: left edge case, right edge case, normal
# case, extremely low prob case (doesn't actually happen for us)
mask1 = (cdf_delta > 1e-5).float().detach()
term1 = mask1 * torch.log(F.threshold(cdf_delta, 1e-12, 1e-12)) + (1. - mask1) * (log_pdf_mid - np.log(127.5))
mask2 = (x > 0.999).float().detach()
term2 = mask2 * log_one_minus_cdf_min + (1. - mask2) * term1
mask3 = (x < -0.999).float().detach()
term3 = mask3 * log_cdf_plus + (1. - mask3) * term2
log_probs = term3.sum(3) + log_prob_from_logits(logit_probs)
if not sum_all:
return -log_sum_exp(log_probs).sum(1).sum(2).squeeze()
else:
return -log_sum_exp(log_probs).sum()
def log_sum_exp(logits):
dim = logits.dim() - 1
max_logits = logits.max(dim)[0]
return ((logits - max_logits.expand_as(logits)).exp()).sum(dim).log().squeeze() + max_logits.squeeze()
def log_prob_from_logits(logits):
dim = logits.dim() - 1
max_logits = logits.max(dim)[0].expand_as(logits)
return logits - max_logits - (logits - max_logits).exp().sum(dim).log().expand_as(logits)
if __name__ == '__main__':
x = Variable(torch.rand(10, 32, 32, 3))
l = Variable(torch.rand(10, 32, 32, 100))
print discretized_mix_logistic_loss(x, l)