-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsimplex.jl
345 lines (279 loc) · 10.9 KB
/
simplex.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
using LinearAlgebra
function read_data()
arr = []
print("""
This is console input format of the data
""")
print("how many product do you have : ")
n_prods = readline()
n_prods = parse(Int,n_prods)
print("\nhow many constrains do you have : ")
n_const = readline()
n_const = parse(Int,n_const)
print("Would you like to give the constrain names?(Y/N) :")
ent_const = readline()
const_names = [string("const_",x) for x = 1:n_const]
sol_col = [x/1 for x = 1:n_const]
z_row = [x/1 for x = 1:n_prods]
if uppercase(ent_const) == "Y"
for i in 1:n_const
print("enter constrain $i name :")
nm = readline()
const_names[i] = nm
end
end
t = 0
for n in const_names
rw = [x/1 for x=1:n_prods]
for x in 1:n_prods
print("enter the value of x$x in $n : ")
val = readline()
rw[x] =parse(Float32,val)
end
rw = hcat(rw...)
if t == 0
arr = rw
else
arr = vcat(arr,rw)
end
t+=1
print("equate $n to : ")
sol_val = readline()
sol_val = parse(Float32, sol_val)
sol_col[t] = sol_val
print("\n")
end
for x in 1:n_prods
print("enter the value of x$x in Z equation : ")
val = readline()
z_row[x] =parse(Float32,val)
end
return (z_row,arr,sol_col)
end
function help_call()
print("""
--HELP:
USING SIMPLEX CALCULATOR
----- requirements -----
1 -> julia - install julia (https://julialang.org)
----- choices -----
1 -> Simplex maximization problems like maximization of profits
2 -> Simplex minimization problem like minimization of expenditure in company
0 -> Help on using the calculator
----- best data -----
please rename your products to X₁, X₂, X₃...Xₙ
for easy feeding of data
n - being the number of products you have
example: computers - X₁
printers - X₂
you can use: - whole numbers
- decimal numbers
Entering the value you are prompted to. the decimal are not
rounded off on entering. this ensures high accuracy
you are advised to use values less than 1 million
you can standardize the data by dividing it to small values
and re-converting after getting solution
----- assumptions -----
I assume that you know how to read the simplex table.
I also assume that you know how to interpret the data in the table and So
I did not interpret the data
This program is to be used by statisticians and also those with
an idea on the simplex algorithmn
This programs though need no much knowledge on mathematics/statistics
----- mixed simplex problem -----
I have not made a choice for mixed simplex problem and so for now
the program may not provide a solution for such problems
----- declaimer -----
This program does not print the tables the way the python program does,
you can copy a tableu array returned and pest in the julia interactive terminal
(see the image linked to this repository)
and the tables will be more clear (I did not want to use any library just to show the tables)
Only the console option of this program is available yet but the GUI might be available
at some point and when available, I will update on how to use the GUI.
The program has been tested with several examples but maybe all the exception
may not have been countered fully. using this program will be an alternative
you chose and so we I am not expecting a complain in failure to meet your expectation as indicated in the LICENCE.
you are however free to add on the program but just incase you cannot,
#You can suggest additions or even send me bugs in the program in the email below.#
kimrop20@gmail.com
----- licence -----
This program is to be used freely. You can also re-edit or modify or even add to
this program.
you can also share but you should not change the developer ownership.
😄 I will appreciate credit given to me
----- developer -----
developed by [ELPHAS KIMUTAI ROP] .
Student Bsc. Statistics and programming.
Machakos University, Kenya.
Email : kimrop20@gmail.com
Website : http://bestcoders.herokuapp.com
""")
end
function main()
printstyled("""
problem types:
1 : maximization
2 : minimization
0: help
""",color=:light_blue, bold=true)
print("What problem type would you like to solve : ")
i_type = readline()
i_type = parse(Int,i_type)
if i_type == 1
z_row, arr,solution = read_data()
solution = vcat(solution, [0])
final, col_names, row_names = format_max(arr, z_row) #call data formatter
final[:, end] = solution #add the solution columns
maximization(final, col_names, row_names)
elseif i_type==2
z_row, arr,solution = read_data()
solution = vcat(solution, [0, 0 - sum(solution)]) #add the siolution row
final, col_names, row_names, del_cols = format_min(arr, z_row) #call data formatter
final = hcat(final, vcat(solution...))
minimization(final, col_names, row_names, del_cols)
elseif i_type == 0
help_call()
else
println("please run the program againa dn select the correct choice")
end
end
function format_max(arr, last_row)
#create column names
col_names = [string("x", i) for i = 1:size(arr)[2]]
# format the data array
n_rows, n_cols = size(arr)
eye_mat = Matrix{Float64}(I, n_rows, n_rows + 1)
extra_last = [0 for n = 1:n_rows+1]
last_row = 0 .- last_row
last_row = vcat(last_row, extra_last)
arr = hcat(arr, eye_mat)
final = vcat(arr, transpose(last_row))
#extend column names
size_cols = size(col_names)[1]
extra_cols = [string("x", size_cols + n) for n = 1:n_rows+1]
col_names = vcat(col_names, extra_cols)
col_names[end] = "sol"
#create row names
extra_cols[end] = "Z"
row_names = extra_cols
#return the table,col names and row names
return (final, col_names, row_names)
end
function format_min(arr, last_row)
col_names = [string("x", i) for i = 1:size(arr)[2]]
n_rows,n_cols = size(arr)
sub_last_r = 0 .- sum(arr, dims = 1)
last_row = last_row
eye_mat = Matrix{Float64}(I, n_rows, n_rows)
eye_mat_neg = Matrix{Float64}(-I, n_rows, n_rows)
extra_last_1s = [1 for n = 1:n_rows]
extra_last = [0 for n = 1:n_rows]
last_row = vcat(last_row, extra_last)
last_row = vcat(last_row, extra_last) # has double the num cols
sub_last_r = hcat(sub_last_r, hcat(extra_last_1s...)) # add ones cols
sub_last_r = hcat(sub_last_r, hcat(extra_last...))
last_row = vcat(hcat(last_row...), sub_last_r)
arr = hcat(arr, eye_mat_neg)
arr = hcat(arr, eye_mat)
final = vcat(arr, last_row)
size_cols = size(col_names)[1]
extra_cols = [string("x", size_cols + n) for n = 1:n_rows]
col_names = vcat(col_names, extra_cols)
size_cols = size(col_names)[1]
del_cols = [string("x", size_cols + n) for n = 1:n_rows]
col_names = vcat(col_names, del_cols)
row_names = vcat(del_cols, ["z", "z1"])
col_names = vcat(col_names, ["sol"])
return (final, col_names, row_names, del_cols)
end
check_neg(x) = x < 0 ? 0 : x
function maximization(arr, col_names, row_names)
final_t, col_names, row_names = solve(arr, 1, col_names, row_names)
println("""
columns: : $col_names
rows : $row_names
final tableu : $final_t
""")
end
function minimization(arr, col_names, row_names, del_cols)
final_t, col_names, row_names =
solve(arr, 2, col_names, row_names, del_cols)
println("""
columns: : $col_names
rows : $row_names
final tableu : $final_t
""")
end
function solve(arr, place, col_names, row_names, arg...)
last_row = arr[end, :][1:end-1]
min_element_last_row, pivot_col_index = findmin(last_row)
while min_element_last_row < 0
pivot_column = arr[:, pivot_col_index]
last_column = arr[:, end]
# no reason to try/catch since julia has infinity for 0 divison error
pivot_row_index = findmin(
check_neg.(pivot_column[1:end-place]) .\ abs.(last_column[1:end-place]),
)[2] # element wise division
pivot_row = arr[pivot_row_index, :]
pivot_element = pivot_column[pivot_row_index]
println("""
columns: : $col_names
row : $row_names
tableu : $arr
pivot element : $pivot_element |> row : $pivot_row_index |> column : $pivot_col_index
pivot row : $pivot_row
pivot column : $pivot_column
""")
forms_arr = [1 for n = 1:size(pivot_column[1:end])[1]]
new_arr = [[0.0] for n = 1:size(pivot_column[1:end])[1]]
for r = 1:size(forms_arr)[1]
row = arr[r, :]
elm = row[pivot_col_index]
if r === pivot_row_index
form = 1 / pivot_element
final_val = row .* form
elseif r === size(forms_arr)[1]
form = abs(elm) / pivot_element
final_val = form .* pivot_row
final_val = final_val .+ row
else
form = (elm / pivot_element) .* pivot_row
final_val = row .- form
end
new_arr[r] = final_val
end
new_arr = transpose(hcat(new_arr...))
arr = new_arr
if place === 2
arr, d_columns, d_rows = solve_array_min(arr,col_names,row_names,pivot_row_index,pivot_col_index,arg[1])
elseif place === 1
arr, d_columns, d_rows = solve_array_max(arr,col_names,row_names,pivot_row_index,pivot_col_index)
end
row_names = d_rows
col_names = d_columns
last_row = arr[end, :][1:end-1]
min_element_last_row, pivot_col_index = findmin(last_row)
end
return arr, col_names, row_names
end
function solve_array_max(arr,d_columns,d_rows,pivot_row_index,pivot_col_index)
# alter the array column and row names following the tablus method for maximization
d_rows[pivot_row_index] = d_columns[pivot_col_index]
return (arr, d_columns, d_rows)
end
function solve_array_min(arr,d_columns,d_rows,pivot_row_index,pivot_col_index,del_col)
pivot_col_name = d_columns[pivot_col_index]
pivot_row_name = d_rows[pivot_row_index]
in_del = pivot_row_name in del_col
if in_del
drop_el_index = findall(x -> x == pivot_row_name, d_columns)[1]
d_columns = d_columns[1:end.!=drop_el_index]
arr = arr[1:end, 1:end.!=drop_el_index]
end
d_rows[pivot_row_index] = pivot_col_name
# alter the array column and row names following the tablus method for minimization
return (arr, d_columns, d_rows)
end
main()
print("exit the program now (y/Y) :")
ext = readline()