forked from jaychempan/SWAN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata.py
151 lines (121 loc) · 5.46 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import torch
import torch.utils.data as data
import torchvision.transforms as transforms
import os
import nltk
import numpy as np
# import yaml
import argparse
import utils
from vocab import deserialize_vocab
from PIL import Image
class PrecompDataset(data.Dataset):
"""
Load precomputed captions and image features
"""
def __init__(self, args, data_split, vocab):
self.vocab = vocab
self.loc = args.data_path
self.img_path = args.image_path
# Captions
self.captions = []
self.maxlength = 0
if data_split != 'test':
with open(self.loc+'%s_caps_verify.txt' % data_split, 'rb') as f:
for line in f:
self.captions.append(line.strip())
self.images = []
with open(self.loc + '%s_filename_verify.txt' % data_split, 'rb') as f:
for line in f:
self.images.append(line.strip())
else:
with open(self.loc + '%s_caps.txt' % data_split, 'rb') as f:
for line in f:
self.captions.append(line.strip())
self.images = []
with open(self.loc + '%s_filename.txt' % data_split, 'rb') as f:
for line in f:
self.images.append(line.strip())
self.length = len(self.captions)
# rkiros data has redundancy in images, we divide by 5, 10crop doesn't
if len(self.images) != self.length:
self.im_div = 5
else:
self.im_div = 1
if data_split == "train":
self.transform = transforms.Compose([
transforms.Resize((278, 278)),
transforms.RandomRotation(degrees=(0, 90)),
transforms.RandomCrop(256),
transforms.ToTensor(),
transforms.Normalize((0.485, 0.456, 0.406),
(0.229, 0.224, 0.225))])
else:
self.transform = transforms.Compose([
transforms.Resize((256, 256)),
transforms.ToTensor(),
transforms.Normalize((0.485, 0.456, 0.406),
(0.229, 0.224, 0.225))])
def __getitem__(self, index):
# handle the image redundancy
img_id = index//self.im_div
caption = self.captions[index]
vocab = self.vocab
# Convert caption (string) to word ids.
tokens = nltk.tokenize.word_tokenize(
caption.lower().decode('utf-8'))
punctuations = [',', '.', ':', ';', '?', '(', ')', '[', ']', '&', '!', '*', '@', '#', '$', '%']
tokens = [k for k in tokens if k not in punctuations]
tokens_UNK = [k if k in vocab.word2idx.keys() else '<unk>' for k in tokens]
caption = []
caption.extend([vocab(token) for token in tokens_UNK])
caption = torch.LongTensor(caption)
image = Image.open(self.img_path +str(self.images[img_id])[2:-1]).convert('RGB')
image = self.transform(image) # torch.Size([3, 256, 256])
return image, caption, tokens_UNK, index, img_id
def __len__(self):
return self.length
def collate_fn(data):
# Sort a data list by caption length
data.sort(key=lambda x: len(x[2]), reverse=True)
images, captions, tokens, ids, img_ids = zip(*data)
# Merge images (convert tuple of 3D tensor to 4D tensor)
images = torch.stack(images, 0)
# Merget captions (convert tuple of 1D tensor to 2D tensor)
lengths = [len(cap) for cap in captions]
targets = torch.zeros(len(captions), max(lengths)).long()
for i, cap in enumerate(captions):
end = lengths[i]
targets[i, :end] = cap[:end]
lengths = [l if l !=0 else 1 for l in lengths]
return images, targets, lengths, ids
def get_precomp_loader(args, data_split, vocab, batch_size=100,
shuffle=False, num_workers=0):
"""Returns torch.utils.data.DataLoader for custom coco dataset."""
dset = PrecompDataset(args, data_split, vocab)
if args.distributed and data_split == 'train':
sampler = torch.utils.data.distributed.DistributedSampler(dset)
data_loader = torch.utils.data.DataLoader(dataset=dset,
batch_size=batch_size,
pin_memory=True,
collate_fn=collate_fn,
num_workers=num_workers,
sampler=sampler)
else:
data_loader = torch.utils.data.DataLoader(dataset=dset,
batch_size=batch_size,
shuffle=shuffle,
pin_memory=True,
collate_fn=collate_fn,
num_workers=num_workers)
return data_loader
def get_loaders(args, vocab):
train_loader = get_precomp_loader(args, 'train', vocab,
args.batch_size, True, args.workers)
val_loader = get_precomp_loader(args, 'val', vocab,
args.batch_size_val, False, args.workers)
return train_loader, val_loader
def get_test_loader(args, vocab):
test_loader = get_precomp_loader(args, 'test', vocab,
args.batch_size_val, False, args.workers)
return test_loader