-
Notifications
You must be signed in to change notification settings - Fork 0
/
app.py
40 lines (32 loc) · 966 Bytes
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
from flask import Flask, render_template, request
from keras.models import load_model
from keras.preprocessing import image
app = Flask(__name__)
model = load_model('model.h5')
model.make_predict_function()
def predict_label(img_path):
i = image.load_img(img_path, target_size=(100,100))
i = image.img_to_array(i)/255.0
i = i.reshape(1, 100,100,3)
p = model.predict(i)
if(p[0][0] < p[0][1]):
return "Mask on"
else:
return "No Mask detected"
# routes
@app.route("/", methods=['GET', 'POST'])
def main():
return render_template("index.html")
@app.route("/about")
def about_page():
return "Flask app....."
@app.route("/submit", methods = ['GET', 'POST'])
def get_output():
if request.method == 'POST':
img = request.files['my_image']
img_path = "static/" + img.filename
img.save(img_path)
p = predict_label(img_path)
return render_template("index.html", prediction = p, img_path = img_path)
if __name__ =='__main__':
app.run(debug=False)