-
Notifications
You must be signed in to change notification settings - Fork 0
/
linears.py
40 lines (33 loc) · 1.44 KB
/
linears.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import torch
import torch.nn as nn
import torch.nn.functional as F
class FeedForwardNetwork(nn.Module):
def __init__(self, input_size, hidden_size, output_size, dropout_rate=0):
super(FeedForwardNetwork, self).__init__()
self.dropout_rate = dropout_rate
self.linear1 = nn.Linear(input_size, hidden_size)
self.linear2 = nn.Linear(hidden_size, output_size)
def forward(self, x):
x_proj = F.dropout(F.relu(self.linear1(x)), p=self.dropout_rate, training=self.training)
x_proj = self.linear2(x_proj)
return x_proj
class PoolerStartLogits(nn.Module):
def __init__(self, hidden_size, num_classes):
super(PoolerStartLogits, self).__init__()
self.dense = nn.Linear(hidden_size, num_classes)
def forward(self, hidden_states, p_mask=None):
x = self.dense(hidden_states)
return x
class PoolerEndLogits(nn.Module):
def __init__(self, hidden_size, num_classes):
super(PoolerEndLogits, self).__init__()
self.dense_0 = nn.Linear(hidden_size, hidden_size)
self.activation = nn.Tanh()
self.LayerNorm = nn.LayerNorm(hidden_size)
self.dense_1 = nn.Linear(hidden_size, num_classes)
def forward(self, hidden_states, start_positions=None, p_mask=None):
x = self.dense_0(torch.cat([hidden_states, start_positions], dim=-1))
x = self.activation(x)
x = self.LayerNorm(x)
x = self.dense_1(x)
return x