-
Notifications
You must be signed in to change notification settings - Fork 6
/
megabyte.py
184 lines (138 loc) · 6.25 KB
/
megabyte.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
from transformer import *
@dataclass
class MegaByteConfig(TransformerConfig):
patch_size: int = 8
d_local: int = None
n_local_layers: int = None
# I don't think this is needed, but I include it to follow the MegaByte paper.
use_padding: bool = True
def __post_init__(self):
c = self
if c.context_size is None:
c.context_size = c.patch_size * c.d_model
super().__post_init__()
if c.d_local is None:
c.d_local = c.d_model//2
if c.n_local_layers is None:
c.n_local_layers = c.n_layers
class MegaByte(Model):
Config = MegaByteConfig
def __init__(self, config: MegaByteConfig):
super().__init__()
self.config = config
c = config
T = c.context_size
K = int_div(T, c.patch_size)
D_G = int_div(c.d_model, c.patch_size)
assert not c.tie_embedding # not implemented
self.global_token_embedding = nn.Embedding(c.vocab_size, D_G)
assert c.position_encoding # else not implemented
self.global_position_encoding = nn.Parameter(torch.randn(T, D_G))
if c.use_padding:
self.global_pad = nn.Parameter(torch.randn(c.d_model))
global_config = c.copy(context_size=K)
self.global_blocks = nn.ModuleList([TransformerBlock(global_config) for _ in range(c.n_layers)])
self.global_to_local = nn.Linear(D_G, c.d_local)
self.local_token_embedding = nn.Embedding(c.vocab_size, c.d_local)
# Local position encoding does not appear in Fig. 2 of the MegaByte paper, but it is used according to:
# https://openreview.net/forum?id=JTmO2V9Xpz¬eId=VhgZzXezYZ
self.local_position_encoding = nn.Parameter(torch.randn(c.patch_size, c.d_local))
if c.use_padding:
self.local_pad = nn.Parameter(torch.randn(c.d_local))
local_config = c.copy(d_model=c.d_local, context_size=c.patch_size, attention_window=None)
self.local_blocks = nn.ModuleList([TransformerBlock(local_config) for _ in range(c.n_local_layers)])
self.logits = Logits(local_config)
super().__post_init__()
generate = Transformer.generate
train_log = Transformer.train_log
def num_params(self, embedding=True):
n = num_params(self)
if not embedding:
n -= num_params(self.global_token_embedding)
n -= num_params(self.global_position_encoding)
n -= num_params(self.local_token_embedding)
n -= num_params(self.local_position_encoding)
return n
def n_mult_add(self, training=False):
c = self.config
P = c.patch_size
T = c.context_size
K = T // P
d = c.d_local
V = c.vocab_size
n = sum(module.n_mult_add(K) for module in self.global_blocks)
n += T * num_params(self.global_to_local)
n += K * sum(module.n_mult_add(P) for module in self.local_blocks)
return n + T*d*V
def forward(self, tokens, targets=None, *, cache=None, log=None):
c = self.config
B, T0 = tokens.shape
P = c.patch_size
D = c.d_model
D_G = int_div(D, P)
d = c.d_local
if cache is None:
t0 = 0
pending_global_tokens = None
else:
prefix = self.module_name + '->'
t0 = cache.get(prefix+'t0', 0)
cache[prefix+'t0'] = t0 + T0
pending_global_tokens = cache.get(prefix+'pending_global_tokens', None)
if pending_global_tokens is None:
pending_global_tokens = torch.full((B, P-1), c.BOS, device=tokens.device)
global_tokens = torch.cat([pending_global_tokens, tokens], 1)
Kx = global_tokens.shape[1] // P
if cache is not None:
cache[prefix+'pending_global_tokens'] = global_tokens[:, Kx*P:]
if Kx > 0:
global_tokens = global_tokens[:, :Kx*P]
global_t = (P-1 + t0) // P
x = self.global_token_embedding(global_tokens) # (B, Kx*P, D_G)
x = x + self.global_position_encoding[global_t*P : (global_t+Kx)*P]
x = x.view(B, Kx, D)
if c.use_padding and global_t == 0:
x = torch.cat([self.global_pad.broadcast_to(B,1,D), x[:,1:]], 1) # B, K, D
for block in self.global_blocks:
x = block(x, cache=cache, cache_seqlen=global_t, log=log)
x = x.view(B*Kx, P, D_G)
x = self.global_to_local(x).view(B, Kx*P, d)
local_emb = self.local_token_embedding(tokens) # (B, T0, d)
if t0==0 and T0>=P:
t1 = (T0//P)*P
y = local_emb[:, :t1].reshape(B*(T0//P), P, d) + self.local_position_encoding
local_emb = local_emb[:, t1:] # (B, T0-t1, d)
if c.use_padding:
y = torch.cat([self.local_pad.broadcast_to(len(y), 1, d), y[:, 1:]], 1)
y = x[:, :t1].reshape(-1, P, d) + y
x = x[:, t1:]
for block in self.local_blocks:
y = block(y, log=log) # cache not needed
y = y.view(B, t1, d)
else:
t1 = t0
T1 = local_emb.shape[1]
if cache is not None:
if t0 > 0:
x = torch.cat([cache[prefix+'local-in'], x], 1) if Kx>0 else cache[prefix+'local-in']
cache[prefix+'local-in'] = x[:, T1:]
assert (t1 + T1 + x[:, T1:].shape[1]) % P == 0
x = x[:, :T1]
if T1 > 0:
assert t1//P == (t1 + T1 - 1)//P
z = local_emb + self.local_position_encoding[t1%P : (t1+T1-1)%P + 1] # (B, T1, d)
if c.use_padding and t1%P == 0:
z = torch.cat([self.local_pad.broadcast_to(B, 1, d), z[:, 1:]], 1)
z = x + z
if t1%P == 0:
cache[prefix+'local-cache'] = {}
for block in self.local_blocks:
z = block(z, cache=cache[prefix+'local-cache'], cache_seqlen=t1%P, log=log)
y = torch.cat([y, z], 1) if t0==0 and T0>=P else z
logits = self.logits(y, log=log).view(B, T0, c.vocab_size)
losses = None
if targets is not None:
losses = {}
losses['cross entropy'] = util.cross_entropy(logits, targets)
losses['loss'] = losses['cross entropy']
return logits, losses