-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpadic.tex
1213 lines (1083 loc) · 44 KB
/
padic.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
In the following section, let $p \in \Z$, $0 < p$ be a prime.
\subsection{\texorpdfstring{$\Z_p$ and $\Q_p$}{TEXT}}
\begin{dfn}[Projective System]\link{dfn:proj_sys}
Let $\N$ be the naturals viewed as a category with the usual ordering.
Let $\CC$ be a category.
Then a \emph{projective system in $\CC$} is a contravariant functor
from $\N$ to $\CC$.
For a projective system $F$,
we will denote the image of the morphism $k \leq l$ with $\fall{k}{l}$.
Equivalently,
a projective system in $\CC$ is
a collection of objects $(F_n)_{n\in\N}$ in $\CC$ together with
a collection of maps $(\fall{n}{n+1} : \map{F_{n+1}}{F_n}{}{})_{n\in \N}$
such that for all $n \in \N$, $\fall{n}{n+1}\fall{n+1}{n+2} = \fall{n}{n+2}$.
If $\CC$ is a subcategory of the category of sets,
then $F$ is called \emph{surjective} when
for all $n \in \N$, $\fall{n}{n+1}$ is surjective.
\end{dfn}
\begin{dfn}[Inverse Limit of a Projective System]\link{dfn:inv_lim}
Let $\CC$ be a category and $F : \map{\N\op}{\CC}{}{}$ be a projective system.
Then an \emph{inverse limit of $F$} is just
a limit of $F$ as an $\N\op$-diagram.
% More explicitly, an inverse limit of $F$ is
% a pair $A$ of $\CC$ together with a collection of maps
% $(\al_n : A \to F_n)_{n\in\N}$ such that
% for all $n \in \N$, $\fall{n}{n+1}\al_{n+1} = \al_n$,
% and is terminal with respect to this property.
\end{dfn}
\begin{prop}[Left Surjective implies Right Exactness of Inverse Limit]
\link{prop:inv_lim:left_surj_imp_right_exact}
Let $R$ be a ring and \[
0 \to A \to B \to C \to 0
\]
be a short exact sequence of projective systems of $R$-modules,
i.e. for all $n \in \N$,
\[
0 \to A_n \to B_n \to C_n \to 0
\]
is a short exact sequence.
Then \[
0 \to \LIM A \to \LIM B \to \LIM C \to 0
\]
is exact at $\LIM A$ and $\LIM B$.
Furthermore, if $A$ is surjective,
then we also have exactness at $\LIM C$.
\end{prop}
\begin{proof}
See \linkto{appendix}{appendix}.
\end{proof}
\begin{dfn}[$p$-adic Integers]\link{dfn:padic}
Define the following projective system of rings,
$\Z/p^\star\Z$ by :
\begin{enumerate}
\item $n \in \obj{\N\op} \mapsto \Z/p^n\Z$
\item For $n \in \N\op$, $\fall{n}{n+1} : \map{\Z/p^{n+1}\Z}{\Z/p^n\Z}{}{}$
is the natural projection.
\end{enumerate}
Then the \emph{$p$-adic integers} $\Z_p$ is defined as
the inverse limit of $\Z/p^\star\Z$.
For $n \in \N$, $\ep_n : \map{\Z_p}{\Z/p^n\Z}{}{}$ will denote the
projection that comes with the definition of $\Z_p$ as a limit.
We have an explicit construction of $\Z_p$ as
the subset of $x \in \dprod{n\in\N}{} \Z/p^n\Z$ such that
for all $n \in \N$, $\fall{n}{n+1}\ep_{n+1}(x) = \ep_n(x)$,
where $\ep_n : \dprod{n\in\N}{} \Z/p^n\Z \to \zmo{n}$ is the projection into
the $n$-th component.
\end{dfn}
\begin{rmk}[Meaning of $p$-adic integers]\link{rmk:padic}
One should think of $p$-adic integers along the following analogy with
complex analysis :
\begin{enumerate}
\item $\Z$ is the ring of holomorphic functions on a space,
the space being the set of primes of $\Z$.
\item A prime $p$ is a point.
\item Taking an integer $f$ to $\Z/p\Z$ is evaluation of
the function $f$ at the point $p$.
\item Sending an integer $f$ to $\Z/p^n\Z$ is
the taylor expansion of $f$ at $p$
up to terms of order $n$.
You can write $f$ in $\Z/p^n\Z$ as a polynomial in $1,p,\dots,p^{n-1}$
with coefficients in $\set{0,\dots,p-1}$.
\item Elements of $\Z_p$ are precisely
coherent collections of taylor expansions of higher and higher order,
i.e. power series in $p$.
This is formalized \linkto{prop:padic:top_prop}{later}.
\end{enumerate}
\end{rmk}
\begin{prop}[$\Z$ injects into $\Z_p$]\link{prop:padic:inject}
The canonical ring morphism $\map{\Z}{\Z_p}{}{}$ has kernel
$\bigcap_{n \in \N} p^n\Z = 0$.
\end{prop}
\begin{proof}
See \linkto{appendix}{appendix} for cool proof.
If you're not cool, you can also do this elementarily using
the explicit construction of $\Z_p$.
\end{proof}
\begin{prop}[Truncation]\link{prop:padic:truncation}
Let $n \in \N$.
Then we have the following short exact sequence of $\Z$-modules :
\begin{figure}[H]
\centering
\begin{tikzcd}
0 \arrow[r] &
\Z_p \arrow[r,"p^n"] &
\Z_p \arrow[r,"\ep_n"] &
\Z/p^n\Z \arrow[r] &
0
\end{tikzcd}
\end{figure}
\end{prop}
\begin{proof}(Generalized from nLab)
%Consider the following short exact sequence
%of projective systems in $\MOD[\Z]$ :
%\begin{figure}[H]
% \centering
% \begin{tikzcd}
% & \vdots \arrow[d] & \vdots \arrow[d] & \vdots \arrow[d] & \\
% 0 \arrow[r] & \Z/p^2\Z \arrow[d]\arrow[r,"p^n"]
% & \Z/p^{n+2}\Z \arrow[d]\arrow[r] & \Z/p^n\Z \arrow[d]\arrow[r] & 0 \\
% 0 \arrow[r] & \Z/p\Z \arrow[d]\arrow[r,"p^n"]
% & \Z/p^{n+1}\Z \arrow[d]\arrow[r] & \Z/p^n\Z \arrow[d]\arrow[r] & 0 \\
% 0 \arrow[r] & 0 \arrow[d]\arrow[r]
% & \Z/p^n\Z \arrow[d]\arrow[r] & \Z/p^n\Z \arrow[d]\arrow[r] & 0 \\
% 0 \arrow[r] & 0 \arrow[d]\arrow[r] & \Z/p^{n-1}\Z \arrow[d]\arrow[r]
% & \Z/p^{n-1}\Z \arrow[d]\arrow[r]& 0 \\
% & \vdots \arrow[d] & \vdots \arrow[d] & \vdots \arrow[d] & \\
% 0 \arrow[r] & 0 \arrow[d]\arrow[r] & \Z/p\Z \arrow[d]\arrow[r]
% & \Z/p\Z \arrow[d]\arrow[r] & 0 \\
% 0 \arrow[r] & 0 \arrow[r] & 0 \arrow[r] & 0 \arrow[r] & 0
% \end{tikzcd}
%\end{figure}
Consider the following short exact sequence of projective systems of
$\Z$-modules :
\begin{cd}[sep = small]
0 \arrow[d] &
0 \arrow[l] \arrow[d] &
\cdots \arrow[l] \arrow[d] &
0 \arrow[l] \arrow[d] &
\zmo{} \arrow[l] \arrow[d,"p^n"] &
\zmo{2} \arrow[l] \arrow[d,"p^n"] &
\cdots \arrow[l] \\
0 \arrow[d] &
\zmo{} \arrow[l] \arrow[d] &
\cdots \arrow[l] \arrow[d] &
\zmo{n} \arrow[l] \arrow[d] &
\zmo{n+1} \arrow[l] \arrow[d] &
\zmo{n+2} \arrow[l] \arrow[d] &
\cdots \arrow[l] \\
0 &
\zmo{} \arrow[l] &
\cdots \arrow[l] &
\zmo{n} \arrow[l] &
\zmo{n} \arrow[l] &
\zmo{n} \arrow[l] &
\cdots \arrow[l] \\
\end{cd}
\linkto{prop:inv_lim:left_surj_imp_right_exact}
{Since the left system is surjective},
by taking inverse limits we obtain
the desired short exact sequence of $\Z$-modules :
\begin{figure}[H]
\centering
\begin{tikzcd}
0 \arrow[r] &
\Z_p \arrow[r,"p^n"] &
\Z_p \arrow[r,"\ep_n"] &
\Z/p^n\Z \arrow[r] &
0
\end{tikzcd}
\end{figure}
\end{proof}
\begin{rmk}[Meaning of Truncation]\link{rmk:truncation}
$\ep_n$ is precisely truncating a power series at
terms of order $n$ and higher.
Then the theorem says the power series that are zero up to terms order $n$
are precisely the ones consisting of terms of order $n$ and higher.
\end{rmk}
\begin{prop}[$\Z_p$ Local Ring]\link{prop:padic:local}
$\Z_p$ is a local ring with maximal ideal $p\Z_p$.
\end{prop}
\begin{proof}(via geometric series)
We show $\Z_p$ is local directly.
Since $p\Z_p = \ker \ep_1$ which is a maximal ideal in $\Z_p$,
it suffices that $p\Z_p$ is a subset of the Jacobson radical of $\Z_p$,
equivalently $1 - p\Z_p \subs \Z_p^\times$.
Let $x \in p\Z_p$.
All we need to do is justify $1/(1 - x) = \dsum{k = 0}{\infty} x^k$
is an element in $\Z_p$.
For $k \in \N$, define $y_k := \dsum{0 \leq l < k}{} \ep_k(x^l) \in \Z/p^k\Z$
and let $y$ be the unique element in $\dprod{n \in \N}{}\Z/p^n\Z$ such that
for all $k \in \N$, $\ep_k(y) = y_k$.
Then $x \in p\Z_p$ implies $x^k \in p^k\Z_p = \ker \ep_k$,
which shows that $y \in \Z_p$ and is the desired inverse of $1 - x$.
\end{proof}
\begin{rmk}[Why $\Z_p$ is a Local Ring]\link{rmk:padic:local}
This is the analogue of the fact that a power series is invertible
if and only if its constant coefficient is invertible.
\end{rmk}
We will now give $\Z_p$ a norm that makes precise
the intuition that higher order terms tend to zero.
% \begin{dfn}[Naturals with Infinity]\link{dfn:nat_infty}
%
% Let $\N^\infty := \N \sqcup \set{\infty}$.
% Define $\leq$ on $\N^\infty$ as follows :
% \begin{itemize}
% \item[--] For all $n, m \in \N^\infty\minus\set{\infty}$,
% $n \leq m$ is as usual.
% \item[--] For all $n \in \N^\infty$, $n \leq \infty$.
% \end{itemize}
%
% Define $+$ on $\N$ as follows :
% \begin{itemize}
% \item[--] For $n, m \in \N^\infty\minus\set{\infty}$, $n + m$ is as usual.
% \item[--] For $n \in \N^\infty$, $n + \infty = \infty$.
% \end{itemize}
% \end{dfn}
\begin{dfn}[$p$-adic Valuation, Norm]\link{dfn:padic:val}
The \emph{$p$-adic valuation} is defined as the following :
\begin{align*}
v_p : \map{\Z_p}{\N^\infty}{}{},
x \mapsto \sup\set{n \in \N^\infty \st \ep_n(x) = 0}
\end{align*}
where $\N^\infty$ is $\N\sqcup\set{\infty}$ with
$\leq, +$ appropriately defined.
From this, we define the \emph{$p$-adic norm},
\begin{align*}
\abs{\hspace{5pt}}_p : \map{\Z_p}{[0,\infty)\subs \R}{}{},
x \mapsto \begin{cases}
p^{-v_p(x)} &,\, x \neq 0 \\
0 &,\, x = 0
\end{cases}
\end{align*}
\end{dfn}
\begin{rmk}[Meaning of $p$-adic Norm]\link{rmk:padic:norm}
Under the interpretation of $p$-adic integers as power series,
$v_p(x)$ is the lowest power of $p$ with non-zero coefficient.
\end{rmk}
\begin{prop}[Unique Decomposition in $\Z_p$]\link{prop:padic:decomp}
Let $x \in \Z_p$, $x \neq 0$.
Then \begin{enumerate}
\item $v_p(x) \neq \infty$.
\item $u_x := x p^{-v_p(x)} \in \Z_p^\times$
and for all $n \in \N, u \in \Z_p^\times$,
$x = p^n u$ implies $n = v_p(x)$ and $u = u_x$.
\end{enumerate}
\end{prop}
\begin{proof}~
$(1)$ For $n \in \N$, $\ep_n(x) = 0$ implies for all $k \leq n$,
$\ep_k(x) = 0$.
Since $x \neq 0$, this implies the set of $n$ such that
$\ep_n(x) = 0$ is bounded above by a natural $N \in \N$.
Hence $v_p(x) \leq N < \infty$.
$(2)$ $u_x$ is well-defined since multiplying by $p^{v_p(x)}$ is
\linkto{prop:padic:truncation}{injective}.
Since \linkto{prop:padic:local}{$\Z_p$ is a local ring} with
maximal ideal $p\Z_p$, it suffices to show that
$u_x \notin p\Z_p = \ker\ep_1$.
Well, if $u_x \in p\Z_p$, then $x \in p^{v_p(x)+1}\Z_p$,
which implies $\ep_{v_p(x) + 1}(x) = 0$,
contradicting the maximality of $v_p(x)$.
Let $n \in \N$, $u \in \Z_p^\times$ such that $x = p^n u \in \ker\ep_n$.
Then $n \leq v_p(x)$ by
\linkto{dfn:padic:val}{definition of $v_p(x)$}.
So $u \in p^{v_p(x) - n}\Z_p$ and $u \in \Z_p^\times$
implies $v_p(x) = n$.
Then $u = u_x$ since multiplying by $p^{v_p(x)}$ is
\linkto{prop:padic:truncation}{injective}.
\end{proof}
\begin{prop}[$(\Z_p,\abs{\hspace{5pt}}_p)$ Normed Ring]
\link{prop:padic:normed_ring}
The following are true :
\begin{enumerate}
\item (Positive Definite)
For all $x \in \Z_p$, $\abs{x}_p = 0$ if and only if $x = 0$.
\item (Multiplcative)
For $x, y \in \Z_p$,
$\abs{x y}_p = \abs{x}_p \abs{y}_p$.
Hence $\Z_p$ is an integral domain.
\item (Ultrametric Property)
For all $x, y \in \Z_p$,
$\abs{x + y}_p \leq \max(\abs{x}_p,\abs{y}_p)$.
Furthermore, $\abs{x}_p \neq \abs{y}_p$ implies equality.
\item (Normalized)
$\abs{1}_p = 1$
\end{enumerate}
Hence $\Z_p$ is a topological ring with the topology from $\abs{\hspace{5pt}}_p$.
\end{prop}
\begin{proof}
Follows from \linkto{prop:padic:decomp}{unique decomposition}.
See \linkto{appendix}{appendix} for more details.
\end{proof}
%\begin{prop}[$\Z_p$ Integral Domain]\link{prop:padic:ID}
%
% For all $x, y \in \Z_p$, $x y = 0$ implies $x = 0$ or $y = 0$.
%\end{prop}
%\begin{proof}
% Follows from the norm being \linkto{prop:padic:normed_ring}{multipicative}
% and $\R$ being an integral domain.
%\end{proof}
% \begin{proof}(Without using the norm)
%
% Let $x, y \in \Z_p$, $x \neq 0 \neq y$.
% Then $x y = p^{v_p(x) + v_p(y)} u(x) u(y)$
% where $u(x), u(y) \in \Z_p^\times$ from
% \linkto{prop:padic:decomp}{unique decomposition}.
% Then $x y = 0$ yields $0 = p^{v_p(x) + v_p(y)}$,
% which implies $\Z$ does not \linkto{prop:padic:inject}{inject} into $\Z_p$,
% a contradiction.
% \end{proof}
\begin{prop}[Ultrametric Property]\link{prop:padic:ultrametric}
Let $(X,d)$ be a metric space with
$d$ satisfying the \emph{ultrametric property} :
for all $x, y, z \in X$, $d(x,z) \leq \max(d(x,y),d(y,z))$.
Then for all sequences $a : \N \to X$,
$a_n$ is cauchy if and only if $\lim_{n\to\infty} d(a_n,a_{n+1}) = 0$.
\end{prop}
\begin{proof}
Elementary.
\end{proof}
\begin{prop}[Topological Properties of $\Z_p$]\link{prop:padic:top_prop}
The following are true :
\begin{enumerate}
\item (Topology)
Give $\Z_p$ the subspace topology in $\dprod{n \in \N}{}\Z/p^n\Z$ with
the product topology from each $\Z/p^n\Z$ being discrete.
Then for all $x \in \Z_p$,
the set of balls $\set{B_{p^{-n}}(x)}_{n \in \N}$ is
a prefilter that generates the neighbourhood filter of $x$
(AKA a neighbourhood base).
That is to say, the topology from the norm is equal to
the topology from the construction of $\Z_p$.
\item (Completeness)
$\Z_p$ is compact and
hence a complete metric space under $\abs{\hspace{5pt}}_p$.
\item (Density of $\Z$ in $\Z_p$)
For each $x \in \Z_p$,
there exists unique $a : \N \to \set{0,\dots,p-1}$ such that
$x = \dsum{k = 0}{\infty} a_k p^k$.
Furthermore, for all $a : \N \to \set{0, \dots, p-1}$,
$\dsum{k = 0}{\infty} a_k p^k$ is convergent in $\Z_p$.
\end{enumerate}
\end{prop}
\begin{proof}~
$(1)$ Let $x \in \Z_p$.
By the definition of product topology,
the neighbourhood filter of $x$ is generated by
the set of preimages of open neighbourhoods of $\ep_n(x)$,
where $n$ ranges over $\N$.
Since the $\Z/p^n\Z$ are all discrete,
the neighbourhood filter of $x$ is generated by the smaller set of
$\set{\ep_n\inv(\ep_n(x))}_{n \in \N} = \set{x + p^n\Z_p}_{n\in\N}
= \set{B_{p^{-n+1}}(x)}_{n\in\N}$,
hence the result.
$(2)$ Define $C : \N \to 2^{\dprod{n\in\N}{}\zmo{n}}$
by mapping $n \in \N$ to the set of elements $x$ such that
$\fall{n}{n+1}\ep_{n+1}(x) = \ep_n(x)$.
Then $\Z_p = \bigcap_{n \in \N} C_n$.
Since $\dprod{n \in \N}{}\Z/p^n\Z$ is compact by Tychonoff's theorem
and closed in compact implies compact, it suffices to show that
each $C_n$ is closed.
We can describe $C_n$ explicitly as
\[
C_n = \bigcup_{y \in \zmo{n}}
\bigcup_{z \in \brkt{\fall{n}{n+1}}\inv y} \ep_n\inv y \cap \ep_{n+1}\inv z
\]
Since every $\zmo{n}$ is discrete,
this is a finite union of closed sets and hence is closed.
$(3)$ For $x \in \Z_p$,
the sequence of truncations $\ep_n(x)$ converges to $x$.
A general power series in $p$ converges because
$\abs{a_k p^k}_p \leq \abs{p}_p^k = p^{-k} \to 0$,
the \linkto{prop:padic:normed_ring}{ultrametric property} of the norm
and completeness of $\Z_p$.
\end{proof}
\begin{dfn}[$p$-adic Rationals]\link{dfn:padic:rat}
$\Q_p$ is defined as the field of fractions of $\Z_p$.
\end{dfn}
\begin{prop}[$\Q_p$ as Localizing $\Z_p$ at $p$]
\link{prop:padic:rat:localization}
As $\Z_p$ algebras,
$\Q_p$ is canonically isomorphic to $(\Z_p)_p = \Z_p[X]/(pX-1)\Z_p[X]$,
the localization of $\Z_p$ with respect to the element $p$.
\end{prop}
\begin{proof}
\linkto{prop:padic:local}{$\Z_p$ is local} with
maximal ideal generated by $p$,
so it suffices to invert $p$ to get the field of fractions.
See \linkto{appendix}{appendix} for more details.
\end{proof}
\begin{rmk}[Meaning of $\Q_p$]\link{rmk:padic:rat}
Continuing with the \linkto{rmk:padic}{analogy},
$\Q_p$ is the field of Laurent series at $p$
with $p$ as a non-essential singularity.
\end{rmk}
\begin{dfn}[$p$-adic Valuation on $\Q_p$]\link{dfn:padic:rat:val}
We extend the $p$-adic valuation to $\Q_p$ by :
\begin{align*}
v_p : \map{\Q_p}{\N^\infty}{}{},
{x}/{p^n} \in (\Z_p)_p \mapsto v_p(x) - n
\end{align*}
From this, we extend the $p$-adic norm as well :
\begin{align*}
\abs{\hspace{5pt}}_p : \map{\Q_p}{[0,\infty)\subs \R}{}{},
x \mapsto \begin{cases}
p^{-v_p(x)} &,\, x \neq 0 \\
0 &,\, x = 0
\end{cases}
\end{align*}
\end{dfn}
\begin{prop}[Topological Properties of $\Q_p$]\link{prop:padic:rat:top_prop}
The following are true :
\begin{enumerate}
\item $(\Q_p,\abs{\hspace{5pt}}_p)$ is a normed ring
and hence a topological ring (field).
\item $\Z_p$ is homeomorphic to its canonical image in $\Q_p$,
where it is an open subring of $\Q_p$.
Hence, $\Q_p$ is locally compact.
\item $\Q_p$ is complete.
\item Since $\Z$ injects canonically into $\Q_p$,
$\Q$ injects canonically into $\Q_p$ as well.
Then $\Q$ is dense $\Q_p$.
\end{enumerate}
\end{prop}
\begin{proof}
Not really relevant for four squares so see \linkto{appendix}{appendix}.
\end{proof}
\subsection{\texorpdfstring{$p$-adic Equations}{TEXT}}
The goal of this section give
conditions to lift approximate solutions mod $p^n$ to solutions in $\Z_p$.
This will be done via the $p$-adic analogue of
\linkto{prop:eqn:newton}{Newton's method}.
\begin{prop}[Mean Value Theorem for Polynomials]
\link{prop:poly:mvt}
Let $A$ be a commutative ring, $f \in A[X]$, $a \in A$.
Then $f - f(a) = f'(a)(X - a)$ in $A[X]/(X-a)^2A[X]$.
\end{prop}
\begin{proof}
If the result is true for $g, h \in A[X]$,
then it's true for $\la g + h$ where $\la \in A$.
Therefore it suffices to show the result for monomial $X^n$.
This follows from induction.
\end{proof}
\begin{prop}[$p$-adic Newton's Method]\link{prop:eqn:newton}
Let $f \in \Z_p[X]$, $x \in \Z_p$ such that
\[
\abs{f(x)}_p < \abs{f'(x)}_p^2
\]
Then there exists $\bar{x} \in \Z_p$ such that
\begin{enumerate}
\item $\abs{f(\bar{x})}_p \leq p^{-1}\abs{f(x)}_p$
\item $\abs{\bar{x} - x}_p \leq {\abs{f(x)}_p}/{\abs{f'(x)}_p}$
\item $\abs{f'(\bar{x})}_p = \abs{f'(x)}_p$
\end{enumerate}
\end{prop}
\begin{proof}
Let $\bar{x} \in \Z_p$ to be determined.
Applying \linkto{prop:poly:mvt}{mean value theorem} yields \[
f(\bar{x})
= f(x) + f'(x)(\bar{x} - x) + a (\bar{x} - x)^2
\]
for some $a \in \Z_p$.
Since $\abs{f'(x)}_p \neq 0$,
we can choose $\bar{x} := x - f(x) / f'(x)$ as in the real case.
Then by the \linkto{prop:padic:normed_ring}{ultrametric property},
we have \begin{align*}
\abs{f(\bar{x})}_p
&\leq \max\brkt{\abs{f(x) + f'(x)(\bar{x} - x)}_p, \abs{a (\bar{x} - x)^2}_p}
\leq \max\brkt{\abs{f(x) + f'(x)(\bar{x} - x)}_p, \abs{\bar{x} - x}_p^2} \\
&= \abs{f(x)}_p^2 \abs{f'(x)}_p^{-2} < \abs{f(x)}_p
\implies \abs{f(\bar{x})}_p \leq p\inv \abs{f(x)}_p
\end{align*}
where we have used $\abs{\Z_p}_p = \set{1, p\inv, p^{-2}, \dots, 0}$.
It remains to show $\abs{f'(\bar{x})}_p = \abs{f'(x)}_p$.
To this end, we apply mean value theorem to $f'$ as obtain \[
f'(\bar{x})
= f'(x) + f''(x) f(x) {f'(x)}\inv
+ b f(x)^2 f'(x)^{-2}
\]
for some $b \in \Z_p$.
\linkto{prop:padic:normed_ring}{It suffices} to show that
the norms of the latter two terms are strictly smaller than $\abs{f'(x)}_p$.
This follows from the hypothesis : \begin{align*}
\abs{b \brkt{{f(x)}/{f'(x)}}^2}_p
\leq {\abs{f(x)}_p^2}/{\abs{f'(x)}_p^2}
< \abs{f(x)}_p < \abs{f'(x)}_p &&
\abs{f''(x) {f(x)}/{f'(x)}}_p
\leq {\abs{f(x)}_p}/{\abs{f'(x)}_p}
< \abs{f'(x)}_p
\end{align*}
\end{proof}
\begin{prop}[Lifting Solutions / Generalized Hensel's Lemma]
\link{prop:eqn:lift}
Let $1 \leq m$, $f \in \Z_p[X_1,\dots,X_m]$, $x \in \Z_p^m$ such that
there exists $1 \leq j \leq m$ satisfying
\[
\abs{f(x)}_p < \abs{\res{\del{f}{X_j}}{x}}_p^2
\]
Then there exists $y \in \Z_p^m$ such that
$f(y) = 0$ and $
\max(\abs{\pi_i(y - x)}_p)_{1\leq i \leq m}
\leq {\abs{f(x)}_p}/{\abs{\res{\del{f}{X_j}}{x}}_p}
$
where $\pi_i : \Z_p^m \to \Z_p$ takes the $i$-th component.
\end{prop}
\begin{proof}
We induct on $m$.
Suppose $m = 1$. Define $x_0 := x$.
Then $\abs{f(x_0)}_p < \abs{f'(x_0)}_p^2$,
so by \linkto{prop:eqn:newton}{$p$-adic Newton's method} and induction,
we have a sequence $x : \N \to \Z_p$ such that
for all $k \in \N$,
\begin{align*}
\abs{f(x_{k+1})}_p \leq p^{-1}\abs{f(x_k)}_p &&
\abs{x_{k+1} - x_k}_p
\leq {\abs{f(x_k)}_p}/{\abs{f'(x_k)}_p} &&
\abs{f'(x_{k+1})}_p = \abs{f'(x_k)}_p
\end{align*}
We see that $\abs{f(x_{k})}_p \leq p^{-k}\abs{f(x_0)}_p$
and hence $\lim_{k\to\infty} f(x_k) = 0$.
Furthermore, we have $\abs{x_{k+1} - x_k}_p \to 0$ as $k \to \infty$ so
by the \linkto{prop:padic:normed_ring}{ultrametric property}
of $\abs{\hspace{5pt}}_p$,
there exists $y \in \Z_p$ such that $\lim_{k\to\infty} x_k = y$.
Since $\Z_p$ is a topological ring with topology from
$\abs{\hspace{5pt}}_p$,
the fact that $\Z_p \to \Z_p, x \mapsto f(x)$ is defined by finitely many
additions and multiplications implies
it is continuous and hence
$f(y) = f(\lim_{k\to\infty} x_k) = \lim_{k\to\infty} f(x_k) = 0$.
For $k \in \N$, again by
the \linkto{prop:padic:normed_ring}{ultrametric property} and
induction on $k$,
we have
\[
\abs{x_{k+1} - x}_p
\leq \max\brkt{\abs{x_{k+1} - x_k}_p, \abs{x_k - x}_p}
\leq \max\brkt{\frac{\abs{f(x_0)}_p}{p^k \abs{f'(x_0)}_p},
\frac{\abs{f(x_0)}_p}{\abs{f'(x_0)}_p}
}
\leq \frac{\abs{f(x_0)}_p}{\abs{f'(x_0)}_p}
\]
Taking limits, we obtain $
\abs{y - x}_p \leq {\abs{f(x_0)}_p}/{\abs{f'(x_0)}_p}
$
as desired.
For $1 < m$, we reduce to the single variable case.
Define $\bar{f}(X_j) := f(\pi_1(x),\dots,X_j,\dots,\pi_m(x)) \in \Z_p[X_j]$.
By the single variable case,
there exists $y_j \in \Z_p$ such that $\bar{f}(y_j) = 0$ and
\[
\abs{y_j - \pi_j(x)}_p
\leq {\abs{\bar{f}(\pi_j(x))}_p}/{\abs{\bar{f}'(\pi_j(x))}_p}
= {\abs{f(x)}_p}/{\abs{\res{\del{f}{X_j}}{x}}_p}
\]
Let $y = (\pi_1(x),\dots,y_j,\dots,\pi_m(x))\in \Z_p^m$.
Then $f(y) = \bar{f}(y_j) = 0$ and for all $1 \leq i \leq m$,
\[
\abs{\pi_i(y - x)}_p \begin{cases}
= 0 &\, i \neq j \\
\leq {\abs{f(x)}_p}/{\abs{\res{\del{f}{X_j}}{x}}_p} &\, i = j
\end{cases}
\]
\end{proof}
\begin{prop}[Hensel's Lemma]\link{prop:eqn:hensel}
Let $1 \leq m$, $f \in \Z_p[X_1,\dots,X_m]$, $x \in \Z_p^m$,
$\ep_1(f(x)) = 0$, $1 \leq i \leq m$, $\ep_1(\res{\del{f}{X_i}}{x}) \neq 0$.
Then there exists $y \in \Z_p^m$ such that
$f(y) = 0$ and $\ep_1^m(y - x) = 0$.
\end{prop}
\begin{proof}
$\ep_1(f(x)) = 0$ is equivalent to $\abs{f(x)}_p \leq p\inv$
and $\ep_1(\res{\del{f}{X_i}}{x}) \neq 0$ is equivalent to
$\abs{\res{\del{f}{X_i}}{x}}_p = 1$.
The conditions of \linkto{prop:eqn:lift}{lifting solutions} are satisfied,
hence we have $y \in \Z_p^m$ such that for all $1 \leq i \leq m$,
\[
\max(\abs{\pi_i(y - x)}_p)_{1\leq i \leq m}
\leq {\abs{f(x)}_p}/{\abs{\res{\del{f}{X_j}}{x}}_p}
\]
The inequality is equivalent to $\ep_1^m(y - x) = 0$.
\end{proof}
\begin{rmk}
Since we are interested in the four square theorem,
which essentially concerns a quadratic form,
it will be useful to give specific conditions for
lifting solutions to quadratic forms.
\end{rmk}
\begin{prop}[Lifting Solutions of Quadratic Forms for $p \neq 2$]
\link{prop:eqn:lift:quad:p_neq_2}
Let $p \neq 2$, $1 \leq m$,
$f = \dsum{i,j = 1}{m} a_{ij}X_iX_j \in \Z_p[X_1,\dots,X_m]$ where
$[a_{ij}]^\top = [a_{ij}]$ and $\det [a_{ij}] \in \Z_p^\times$
i.e. $f$ is a non-degenerate quadratic form.
Let $a \in \Z_p$, $x \in \Z_p^m$ such that
$x$ is primitive and $\ep_1(f(x)) = \ep_1(a)$.
Then there exists $y \in \Z_p^m$ such that
$f(y) = a$ and $\ep_1^m(y - x) = 0$.
\end{prop}
\begin{proof}
By \linkto{prop:eqn:hensel}{Hensel's Lemma},
it suffices to give $1 \leq i \leq m$ such that
$\ep_1(\res{\del{f}{X_i}}{x}) \neq 0$.
Taking the derivative of $f$,
evaluating at $x$ and reducing mod $p$ yields
the following linear system :
\begin{align*}
\sqbrkt{\ep_1\brkt{\res{\del{f}{X_i}}{x}}}_{i = 1}^m
= 2 [\ep_1(a_{ij})]_{i,j = 1}^m \ep_1(x)
\end{align*}
Since $\det [a_{ij}] \in \Z_p^\times$,
$\det [\ep_1(a_{ij})]_{i,j = 1}^m \neq 0$.
The matrix is hence invertible and since
$\ep_1(x) \neq 0$ by definition of \linkto{dfn:padic:prim}{primitivity},
there exists a desired $1 \leq i \leq m$.
\end{proof}
\begin{prop}[Lifting Solutions of Quadratic Forms for $p = 2$]
\link{prop:eqn:lift:quad:p_eq_2}
Let $p = 2$, $1 \leq m$,
$f = \dsum{i,j = 1}{m} a_{ij}X_iX_j \in \Z_p[X_1,\dots,X_m]$ where
$[a_{ij}]^\top = [a_{ij}]$, i.e. $f$ is a quadratic form.
Let $a \in \Z_2$, $x \in \Z_2^m$ such that
$x$ is primitive and $\ep_3(f(x)) = \ep_3(a)$.
Then \begin{enumerate}
\item Let $1 \leq i \leq m$ where
$\ep_2\brkt{\res{\del{f}{X_i}}{x}} \neq 0$.
Then there exists $y \in \Z_2^m$ such that $f(y) = a$ and
$\ep_3(y - x) = 0$.
\item The condition of $(1)$ is satisfied when
$\det\sqbrkt{a_{ij}}_{i,j = 1}^m \in \Z_2^\times$.
\end{enumerate}
\end{prop}
\begin{proof}~
$(1)$
$\ep_3(f(x)) = \ep_3(a)$ and
$\ep_2\brkt{\res{\del{f}{X_i}}{x}} \neq 0$ are respectively equivalent to
$\abs{f(x) - a}_p \leq p^{-3}$ and $p\inv \leq \abs{\res{\del{f}{X_i}}{x}}_p$.
Hence \[
\abs{f(x) - a}_p < \abs{\res{\del{f}{X_i}}{x}}_p^2
\]
So by \linkto{prop:eqn:lift}{lifting solutions},
there exists $y \in \Z_p^m$ such that
$f(y) = a$ and \[
\max(\abs{\pi_i(y - x)}_p)_{1\leq i \leq m}
\leq {\abs{f(x) - a}_p}/{\abs{\res{\del{f}{X_j}}{x}}_p}
\]
By taking the derivative of $f$, evaluating at $x$ and
reducing mod $2$, we have $\ep_1\brkt{\res{\del{f}{X_i}}{x}} = 0$
and hence its valuation is $1$.
We thus obtain \[
\max(\abs{\pi_i(y - x)}_p)_{1\leq i \leq m}
\leq p^{-2}
\]
This is equivalent to $\ep_2(y - x) = 0$.
$(2)$ This follows from taking the derivative of $f$,
evaluating at $x$ and reducing mod $4$, we have
\begin{align*}
\sqbrkt{\ep_2\brkt{\res{\del{f}{X_i}}{x}}}_{i = 1}^m
= 2 [\ep_2(a_{ij})]_{i,j = 1}^m \ep_2(x)
\end{align*}
Since $\det [a_{ij}]_{i,j = 1}^m \in \Z_2^\times$,
$\det [\ep_2(a_{ij})]_{i,j = 1}^m \in \zmo[2]{2}^\times$,
the fact that $\ep_2(x)$ is not a multiple of $2$ implies the tuple
$[\ep_2(a_{ij})]_{i,j = 1}^m \ep_2(x)$ is not a multiple of $2$.
The existence of $i$ such that $\ep_2\brkt{\res{\del{f}{X_i}}{x}} \neq 0$
follows.
\end{proof}
\begin{rmk}
When solving $f(x) = 0$,
we would often like to ignore the trivial solution $x = 0$ if it exists.
So we give a characterisation for non-trivial solutions to exist.
\end{rmk}
\begin{lem}[Inverse Limit of Finite, Non-Empty System is Non-Empty]
\link{prop:inv_lim:nonempty}
Let $D : \N\op \to \SET$ be a projective system of sets
such that for all $n\in \N$, $D_n$ is finite and non-empty.
Then $\LIM D $ is nonempty.
\end{lem}
\begin{proof}
If $D$ is a surjective system, then $\LIM D $ is non-empty.
We will reduce to this case.
For $n \in \N$,
consider the descending sequence of subsets
$\set{\fall{n}{k} D_k \st n \leq k}$ in $D_n$.
Since $D_n$ is finite,
there exists an $N$ such that for all $k \geq N$,
$\fall{n}{k} D_k = \fall{n}{N} D_N$.
For $n \in \N$,
let $N(n)$ be the minimal natural with respect to this property.
Let $E_n := \fall{n}{N(n)} D_{N(n)}$.
Since $D_{N(n)} \neq \nothing$, $E_n \neq \nothing$.
For $n \in \N$,
let $M = \max(N(n),N(n+1))$.
Then $E_n = \fall{n}{M} D_M = \fall{n}{n+1}\fall{n+1}{M} D_M
= \fall{n}{n+1} E_{n+1}$.
Thus $E : \N\op \to \SET$ is a non-empty, surjective system that
injects into $D$.
Therefore $\nothing \neq \LIM E \to \LIM D$.
\end{proof}
\begin{notation}
Let $n \in \N, 0 < m$.
Then there is a canonical morphism of $\Z_p$ algebras from
$\Z_p[X_1,\dots,X_m]$ to $\Z/p^n\Z[X_1,\dots,X_m]$.
For $I \subs \Z_p[X_1,\dots,X_m]$,
let $I_n$ denote the image of $I$.
For a single polynomial $f \in \Z_p[X_1,\dots,X_m]$,
let $f_n$ denote its image.
More explicitly, for $f = \dsum{t \in \N^m}{} a_t \underline{X}^t$,
\[
f_n := \dsum{t \in \N^m}{} \ep_n(a_t) \underline{X}^t
\]
\end{notation}
\begin{dfn}[Vanishing]\link{dfn:vanish}
Let $A$ be a ring, $m \in \N$, $I \subs A[X_1,\dots,X_m]$.
Then $\V_A(I) \subs A^m$ is defined as the tuples $x$ such that
for all $f \in I$, $f(x) = 0$.
When the ring in question is clear,
we abbreviate to $\V(I)$.
\end{dfn}
\begin{prop}[$p$-adic Affine Variety is Inverse Limit]
\link{prop:eqn:inv_lim}
Let $0 < m$, $I \subs \Z_p[X_1,\dots,X_m]$, $I_n$ the image of $I$
in $\Z/p^n\Z[X_1,\dots,X_m]$ for $n \in \N$.
Then $\V(I) \iso \LIM \V(I_\star)$ as sets.
In particular,
the variety defined by $I$ is non-empty if and only if
for all $n\in \N$, its projection mod $p^n$ is non-empty.
\end{prop}
\begin{proof}
%We first show that $\Z_p^m$ has the universal property of
%$\LIM (\Z/p^\star\Z)^m$.
%Let $X$ be an arbitrary set.
%We have the following chain of set-theoretic isomorphisms :
%\begin{align*}
% \SET(X,\Z_p^m) \iso \brkt{\SET(X,\Z_p)}^m
% \iso \brkt{\SET^{\N\op}(\underline{X},\Z/p^\star\Z)}^m
% \iso \SET^{\N\op}(\underline{X},\brkt{\Z/p^\star\Z}^m)
%\end{align*}
% (Breaking this fall :
% An element $x$ of $\Z_p^m$ is the same as
% $m$ elements $x_i$ of $\Z_p$,
% which is the same as an $m$-tuple of sequences
% $((\ep_k(x_1))_{k \in \N},\dots,\ep_k(x_m))_{k \in \N})$ in
% the projective system $\Z/p^\star\Z$,
% which is the same as a sequence
% $((\ep_k(x_1),\dots,\ep_k(x_m)))_{k \in \N}$ in
% the projective system $(\Z/p^\star\Z)^m$,
% which is the same as an element in the inverse limit of $(\Z/p^\star\Z)^m$.
% )
%Thus $\Z_p^m \iso \LIM (\Z/p^\star\Z)^m$ in a unique way that
%commutes with their projections to $(\Z/p^n\Z)^m$.
First note that
since limits commute with limits,
$\Z_p^m \iso \LIM \brkt{\zmo{\star}}^m$.
For $x \in \Z_p^m$ and $f \in \Z_p[X_1,\dots,X_m]$,
$f(x) = 0$ if and only if for all $n \in \N$, $\ep_n\circ f(x) = 0$.
For $n \in \N$,
let $\ep_n^m : \Z_p^m \to \zmo{n}^m$ denote the natural projection.
Then \[
\ep_n\circ f(x) = \ep_n\brkt{\dsum{t\in\N^m}{}a_tx^t}
= \dsum{t\in\N^m}{}\ep_n(a)\ep_n^m(x)^t
= f_n\circ\ep_n^m(x)
\]
Therefore $f(x) = 0$ if and only if
for all $n\in\N$, $f_n\circ\ep_n^m(x) = 0$.
This shows that $\V(I) \iso \LIM \V(I_\star)$
under the isomorphism $\Z_p^m \iso \LIM (\Z/p^\star\Z)^m$.
The `in particular' follows from
\linkto{prop:inv_lim:nonempty}{inverse limit of finite, nonempty is nonempty}.
\end{proof}
\begin{dfn}[Primitive Solutions]\link{dfn:prim}
Let $m, n \in \N^+$.
Let $\ep_1^m : \Z_p^m \to \zmo{}^m$ and
$(\fall{1}{n})^m : \zmo{n}^m \to \zmo{}^m$ be the natural projections.
For $x \in \Z_p^m$, $x$ is called \emph{primitive} when $\ep_1^m(x) \neq 0$,
i.e. when it is not divisible by $p$.
Similarly, for $x \in (\Z/p^n\Z)^m$,
$x$ is called primitive when $(\fall{1}{n})^m x \neq 0$.
\end{dfn}
% \begin{dfn}[Homogeneous Polynomials]\link{dfn:homogen}
%
% Let $1 \leq m$, $A$ be a commutative ring,
% $f \in A[X_1,\dots,X_m]$.
% Then $f$ is called \emph{homogeneous} when
% for all $\la \in A$, $f(\la X) = \la^{\deg f} f(X)$.
% Equivalently, all monomials in $f$ with non-zero coefficients
% have the same degree.
% \end{dfn}
\begin{prop}[$\Q_p$, $\Z_p$ Points of Projective Varieties]
\link{prop:eqn:rat_pts}
Let $1\leq m$, $I \subs \Z_p[X_1,\dots,X_m]$,
for all $f \in I$, $f$ homogeneous.
Then the following are equivalent :
\begin{enumerate}
\item There exists $x \in \V_{\Q_p}(I)$ such that $x \neq 0$.
\item There exists $x \in \V_{\Z_p}(I)$ such that $x$ is primitive.
\item For all $n \geq 1$,
there exists $x_n \in \V_{\Z/p^n\Z}(I_n)$ such that $x_n$ primitive.
\footnote{
Serre only requires $n > 1$.
This is indeed equivalent since have a primitive zero for any $n > 1$
automatically gives you a primitive zero for $n = 1$ via $\fall{1}{n}$.
We cannot let $n = 0$ though, since there are no primitive elements in
${\Z/\Z}^m = 0^m$.
}
\end{enumerate}
\end{prop}
\begin{proof}~
$(1\iff 2)$ The reverse implication is clear.
For forwards, let $x = (x_i)_{i = 1}^m \in \V_{\Q_p}(I)$, $x \neq 0$.
Let $h := \inf\set{v_p(x_i) \st i = 1, \dots, m}$.
Since $x \neq 0$, $h < \infty$.
Let $y := p^{-h}x$.
Then by definition of $h$, $y \in \Z_p^m$ and there exists one component
that is not-divisible by $p$, i.e. $y$ is primitive.
Then $f(y) = p^{-h\deg f}f(x) = 0$ by homogeneity of $f$.
Thus $y$ is as desired.
$(2 \iff 3)$ It suffices to show that
the sets of primitive elements in $\V_{\Z/p^n\Z}\brkt{I_n}$ forms a
projective subsystem of $\V_{\Z/p^\star\Z}\brkt{I_\star}$ and that
the inverse limit is isomorphic to the primitive elements in
$\V_{\Z_p}\brkt{I}$.
Let $P : \N\op \to \SET$,
$n \mapsto \V_{\Z/p^n\Z}\brkt{I_n} \cap \set{x \st x \text{ primitive}}$.
By the definition of $\V_{\Z/p^\star\Z}\brkt{I_\star}$ being projective,
${\fall{n}{n+1}}^m$ takes primitive zeros to primitive zeros.
This induces the structure of a projective system for $P$,
making it a subsystem of $\V_{\Z/p^\star\Z}\brkt{I_\star}$.
Hence, $\LIM P$ injects into $\V_{\Z_p}\brkt{I}$ canonically.
We identify it with its image.
Clearly, for any $x \in \LIM P$, $\ep_1(x) \neq 0$.
So $\LIM P$ is a subset of primitive elements of $\V_{\Z_p}\brkt{I}$.
Conversely, any primitive element $x$ of $\V_{\Z_p}\brkt{I}$ defines
a natural transformation from the singleton set $*$ as a constant functor
to the projective system $P$,
i.e. an element of $\LIM P$ that maps to $x$.
Hence $\LIM P$ is equal to
the set of primitives in $\V_{\Z_p}\brkt{I}$.
\end{proof}
\subsection{Appendix : Omitted Proofs}\link{appendix}
\begin{proof}~(\linkto{prop:inv_lim:left_surj_imp_right_exact}{
Left Surjective implies Right Exactness of Inverse Limit
} - from Atiyah)
It is elementary to check that we have the short exact sequence of $R$-modules
\[
0 \to \prod A \to \prod B \to \prod C \to 0
\]
where $\prod$ takes the product of $R$-modules.
For $n \in \N$, let $\pi_n : \prod A \to A_n$ be the natural projection.
Note that we have a canonical map \begin{cd}
\LIM A \arrow[r,"\prod \ep"] & \prod A
\end{cd}
induced from the natural maps $\ep_n : \LIM A \to A_n$ for $n \in \N$.
Define $d^A : \prod A \to \prod A$ via
$d^A_n : \prod A \to A_n := \fall{n}{n+1} \pi_{n+1} - \pi_n$
and the universal property of $\prod A$.
Define $d^B, d^C$ similarly for $B, C$ and we have
the following commutative diagram of $R$-modules with exact rows :
\begin{cd}[sep = small]
0 \arrow[r] &
\prod A \arrow[r] \arrow[d,"d^A"]&
\prod B \arrow[r] \arrow[d,"d^B"] &
\prod C \arrow[r] \arrow[d,"d^C"]&
0 \\
0 \arrow[r] &
\prod A \arrow[r] &
\prod B \arrow[r] &
\prod C \arrow[r] &
0
\end{cd}
Applying the snake lemma, we obtain exact sequence of $R$-modules :
\begin{cd}
0 \arrow[r] &
\ker d^A \arrow[r] &
\ker d^B \arrow[r] &
\ker d^C \arrow[r] &
\coker d^A \arrow[r] &
\coker d^B \arrow[r] &
\coker d^C \arrow[r] &
0
\end{cd}
It is straight forward to check that
$\LIM A, \LIM B, \LIM C$ are respectively the kernels of $d^A, d^B, d^C$
and that $A$ surjective implies the zero module $0$ is the cokernel of $d^A$.
The result follows.
\end{proof}
\begin{proof}(\linkto{prop:padic:inject}{$\Z$ injects into $\Z_p$})
We have a short exact sequence of projective systems of $\Z$-modules,
\begin{figure}[H]
\centering
\begin{tikzcd}
0 \arrow[r] & p^\star\Z \arrow[r]
& \underline{\Z} \arrow[r] & \Z/p^\star\Z \arrow[r] & 0
\end{tikzcd}
\end{figure}