-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrainer.py
238 lines (196 loc) · 8.37 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
import logging
import os
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import numpy as np
from collections import defaultdict
from sklearn.metrics import (
accuracy_score,
average_precision_score,
precision_recall_curve,
roc_curve,
hamming_loss,
)
import models.misc
import utils.recorder
import utils.misc
class Trainer:
def __init__(self, args, model, train_loader, val_loader):
self.args = args
self.model = model.to(args.device)
self.train_loader = train_loader
self.val_loader = val_loader
self.device = args.device
self.optimizer = optim.AdamW(
self.model.parameters(),
lr=self.args.lr,
betas=self.args.betas,
weight_decay=self.args.weight_decay,
)
self.scheduler = optim.lr_scheduler.StepLR(
self.optimizer, step_size=self.args.step_size, gamma=self.args.gamma
)
self.criterion = nn.BCEWithLogitsLoss()
self.losses = {
'train': defaultdict(list),
'eval': defaultdict(list),
}
self.writer = utils.recorder.RecoderX(args.save_path)
self.train_steps = len(train_loader.dataset) // args.batch_size
self.eval_steps = len(val_loader.dataset) // args.batch_size
logging.info('Training steps in epoch: {}.'.format(self.train_steps))
logging.info('Evaluating steps in epoch: {}.'.format(self.eval_steps))
def train(self, epochs):
for epoch in range(epochs):
self.train_epoch(epoch=epoch)
self.eval_epoch(epoch=epoch)
if epoch % self.args.save_every == 0:
models.misc.save_model(
self.model,
os.path.join(
self.args.save_path, 'checkpoints', 'classifier_check_{}.pt'.format(epoch)
),
)
logging.info(
'Epoch: {}, Train loss: {:.4f}, Val loss {:.4f}, Val accuracy {:.2f}, Val hamming {:.2f}, Val average-precision {:.2f}'.format(
epoch + 1,
np.mean(self.losses['train']['loss'][-self.train_steps :]),
np.mean(self.losses['eval']['loss'][-self.eval_steps :]),
self.losses['eval']['acc'][-1],
self.losses['eval']['hmm'][-1],
self.losses['eval']['auprc'][-1],
)
)
self.writer.add_scalar(
'epoch/loss/train',
np.mean(self.losses['train']['loss'][-self.train_steps :]),
epoch,
)
self.writer.add_scalar(
'epoch/loss/eval', np.mean(self.losses['eval']['loss'][-self.eval_steps :]), epoch
)
self.writer.add_scalar(
'epoch/accuracy/eval',
np.mean(self.losses['eval']['accuracy'][-self.eval_steps :]),
epoch,
)
models.misc.save_model(
self.model, os.path.join(self.args.save_path, 'checkpoints', 'classifier_check_last.pt')
)
models.misc.save_model_entire(
self.model,
os.path.join(self.args.save_path, 'checkpoints', 'classifier_check_last_entire.pt'),
)
self.writer.close()
def eval(self):
self.eval_epoch(epoch=0)
logging.info(
'Evaluation: Val loss {:.4f}, Val accuracy {:.2f}, Val average-precision {:.2f}'.format(
np.mean(self.losses['eval']['loss'][:]),
np.mean(self.losses['eval']['accuracy'][:]),
self.losses['eval']['auprc'][-1],
)
)
def train_epoch(self, epoch):
self.model.train()
self.scheduler.step(epoch=epoch)
for step, data in enumerate(self.train_loader):
self.train_step(data)
if step % self.args.print_every == 0:
logging.info(
'Step: {}, Loss: {:.4f}'.format(
step,
self.losses['train']['loss'][-1],
)
)
def eval_epoch(self, epoch):
self.model.eval()
all_labels = []
all_predictions = []
all_probabilities = []
with torch.no_grad():
for _, data in enumerate(self.val_loader):
labels, probabilities, predictions = self.eval_step(data)
all_labels.append(labels)
all_probabilities.append(probabilities)
all_predictions.append(predictions)
all_labels = np.concatenate(all_labels, axis=0)
all_probabilities = np.concatenate(all_probabilities, axis=0)
all_predictions = np.concatenate(all_predictions, axis=0)
thresholds = self._compute_optimal_thresholds(all_labels, all_probabilities)
thresholds.update({'cls': self.val_loader.dataset.cls_list})
utils.misc.save_dict(
thresholds,
os.path.join(self.args.save_path, 'checkpoints', 'thresholds_{}.pkl'.format(epoch)),
)
auprc = average_precision_score(all_labels, all_probabilities)
self.writer.add_scalar('average_precision/eval', auprc, epoch)
self.losses['eval']['auprc'].append(auprc)
acc = accuracy_score(all_labels, all_predictions)
self.writer.add_scalar('accuracy/eval', acc, epoch)
self.losses['eval']['acc'].append(acc)
hmm = hamming_loss(all_labels, all_predictions)
self.writer.add_scalar('hammin/eval', hmm, epoch)
self.losses['eval']['hmm'].append(hmm)
self.writer.plot_multi_confusion_matrices(
'confusion/eval', all_labels, all_predictions, self.val_loader.dataset.cls_list, epoch
)
self.writer.plot_multi_precision_recall_curves(
'precision_recall/eval',
all_labels,
all_probabilities,
self.val_loader.dataset.cls_list,
epoch,
)
self.writer.plot_multi_roc_curves(
'roc/eval',
all_labels,
all_probabilities,
self.val_loader.dataset.cls_list,
epoch,
)
def _compute_optimal_thresholds(self, labels, probabilities):
num_classes = labels.shape[-1]
optimal_thresholds_pr, optimal_thresholds_roc = np.zeros(num_classes), np.zeros(num_classes)
for i in range(num_classes):
precision, recall, thresholds = precision_recall_curve(
y_true=labels[:, i], probas_pred=probabilities[:, i]
)
f1_scores = 2 * precision * recall / (precision + recall)
optimal_thresholds_pr[i] = thresholds[np.nanargmax(f1_scores)]
fpr, tpr, thresholds = roc_curve(y_true=labels[:, i], y_score=probabilities[:, i])
optimal_thresholds_roc[i] = thresholds[np.nanargmax(tpr - fpr)]
average_thresholds = (optimal_thresholds_roc + optimal_thresholds_pr) / 2.0
thresholds = {
'precision_recall': optimal_thresholds_pr,
'roc': optimal_thresholds_roc,
'average': average_thresholds,
}
return thresholds
def train_step(self, data):
inputs = data['input'].to(self.device)
labels = data['label'].to(self.device)
self.optimizer.zero_grad()
preds = self.model(inputs)
loss = self.criterion(preds, labels)
loss.backward()
self.optimizer.step()
self.losses['train']['loss'].append(loss.item())
self.writer.add_scalar('loss/train', loss.item(), len(self.losses['train']['loss']))
def eval_step(self, data):
inputs = data['input'].to(self.device)
labels = data['label'].to(self.device)
probabilities = self.model(inputs)
loss = self.criterion(probabilities, labels)
predictions = (torch.sigmoid(probabilities) > 0.5).float()
accuracy = accuracy_score(labels.cpu().numpy(), predictions.cpu().numpy())
self.losses['eval']['loss'].append(loss.item())
self.losses['eval']['accuracy'].append(accuracy)
self.writer.add_scalar('loss/eval', loss.item(), len(self.losses['eval']['loss']))
self.writer.add_scalar('accuracy/eval', accuracy, len(self.losses['eval']['accuracy']))
labels = labels.float().cpu()
probabilities = probabilities.float().cpu()
predictions = predictions.float().cpu()
return labels, probabilities, predictions