Skip to content

Latest commit

 

History

History
179 lines (118 loc) · 6.38 KB

README_new.md

File metadata and controls

179 lines (118 loc) · 6.38 KB

推荐系统 百面百搭

作者:杨夕、Rulcy、大雨、刘乙己🇻、Stefan、拒绝焦虑李某人、王翔

NLP 百面百搭 地址:https://github.com/km1994/NLP-Interview-Notes

手机版NLP百面百搭

推荐系统 百面百搭 地址:https://github.com/km1994/RES-Interview-Notes

手机版推荐系统百面百搭

NLP论文学习笔记:https://github.com/km1994/nlp_paper_study

手机版NLP论文学习笔记

关注公众号 【关于NLP那些你不知道的事】 加入 【NLP && 推荐学习群】一起学习!!!

注:github 网页版 看起来不舒服,可以看 手机版推荐系统百面百搭

  • 1.1 什么是推荐系统?
  • 1.2 推荐系统的作用?
  • 1.3 推荐系统的意义?
  • 1.4 推荐系统要解决的问题?
  • 1.5 常用的推荐系统的逻辑框架是怎么样的呢?
  • 1.6 常用的推荐系统的技术架构是怎么样的呢?
  • 1.7 推荐系统算法工程师日常解决问题?
  • 1.8 推荐系统算法工程师 处理的数据部分有哪些,最后得到什么数据?
  • 1.9 推荐系统算法工程师 处理的模型部分有哪些,最后得到什么数据?
  • 1.10 模型训练的方式?
  • 1.11 推荐系统 的 流程是什么?
  • 1.12 推荐系统 的 流程是什么?
  • 1.13 推荐系统 与 搜索、广告 的 异同?
  • 1.14 推荐系统 整体架构?
  • 一、基础篇
    • 1.1 什么是协同过滤?
    • 1.2 协同过滤的推荐流程是怎么样?
  • 二、基于用户的协同过滤 (User-CF-Based)篇
    • 2.1 基于用户的协同过滤 (User-CF-Based) 是什么?
    • 2.2 基于用户的协同过滤 (User-CF-Based) 的思想是什么?
    • 2.3 基于用户的协同过滤 (User-CF-Based) 的特点是什么?
  • 三、基于物品的协同过滤 (Item-CF-Based)篇
    • 3.1 基于物品的协同过滤 (Item-CF-Based) 是什么?
    • 3.2 基于物品的协同过滤 (Item-CF-Based) 的思想是什么?
    • 3.3 基于物品的协同过滤 (Item-CF-Based) 的特点是什么?
    • 3.4 基于物品的协同过滤 (Item-CF-Based) 的具体步骤是什么?
  • 四、User-CF-Based 与 Item-CF-Based 对比篇
    • 4.1 User-CF-Based 与 Item-CF-Based 的应用场景的区别
    • 4.2 User-CF-Based 与 Item-CF-Based 的存在问题的区别
  • 五、User-CF-Based 与 Item-CF-Based 问题篇
  • 一、动机篇
    • 1.1 为什么 需要 矩阵分解?
  • 二、隐语义模型 介绍篇
    • 2.1 什么是 隐语义模型?
    • 2.2 隐语义模型 存在什么问题?
  • 三、矩阵分解 介绍篇
    • 3.1 如何 获取 ⽤户矩阵Q 和 音乐矩阵P?
    • 3.2 矩阵分解 思路 是什么?
    • 3.3 矩阵分解 原理 是什么?
    • 3.4 如何 利用 矩阵分解 计算 用户 u 对 物品 v 的 评分?
  • 四、矩阵分解 优缺点篇
    • 4.1 矩阵分解 存在什么问题?

2.3 【关于 逻辑回归篇】 那些你不知道的事

  • 一、动机篇
    • 1.1 为什么 需要 逻辑回归?
  • 二、逻辑回归 介绍篇
    • 2.1 逻辑回归 如何解决 上述问题?
    • 2.2 什么是逻辑回归
  • 三、逻辑回归 推导篇
    • 3.1 逻辑回归 如何推导?
    • 3.2 逻辑回归 如何求解优化?
  • 四、逻辑回归 推荐流程篇
    • 4.1 逻辑回归 推荐流程?
  • 五、逻辑回归 优缺点篇
    • 5.1 逻辑回归 有哪些优点?
    • 5.2 逻辑回归 有哪些缺点?

2.4 FM 算法篇

2.5 FFM 算法篇

2.6 GBDT+LR 篇

2.7 LS-PLM 算法篇

三、推荐系统 深度学习篇

3.1 AutoRec 篇

3.2 NeuralCF模型 篇

3.3 Deep Crossing模型 篇

3.4 PNN 模型 篇

3.5 Wide&Deep模型 篇

3.6 FM与深度学习模型的结合 篇

3.7 注意力机制在推荐模型中的应用篇

3.8 DIEN 篇

四、推荐系统 落地篇

五、多角度审视推荐系统篇

六、推荐系统 评估方法篇

七、推荐系统 工程落地篇